zoukankan      html  css  js  c++  java
  • tensorflow 1.0 学习:用别人训练好的模型来进行图像分类

    谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类。

    下载地址:https://storage.googleapis.com/download.tensorflow.org/models/inception_dec_2015.zip

    下载完解压后,得到几个文件:

    其中的classify_image_graph_def.pb 文件就是训练好的Inception-v3模型。

    imagenet_synset_to_human_label_map.txt是类别文件。

    随机找一张图片:如

    对这张图片进行识别,看它属于什么类?

    代码如下:先创建一个类NodeLookup来将softmax概率值映射到标签上。

    然后创建一个函数create_graph()来读取模型。

    最后读取图片进行分类识别:

    # -*- coding: utf-8 -*-
    
    import tensorflow as tf
    import numpy as np
    import re
    import os
    
    model_dir='D:/tf/model/'
    image='d:/cat.jpg'
    
    
    #将类别ID转换为人类易读的标签
    class NodeLookup(object):
      def __init__(self,
                   label_lookup_path=None,
                   uid_lookup_path=None):
        if not label_lookup_path:
          label_lookup_path = os.path.join(
              model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt')
        if not uid_lookup_path:
          uid_lookup_path = os.path.join(
              model_dir, 'imagenet_synset_to_human_label_map.txt')
        self.node_lookup = self.load(label_lookup_path, uid_lookup_path)
    
      def load(self, label_lookup_path, uid_lookup_path):
        if not tf.gfile.Exists(uid_lookup_path):
          tf.logging.fatal('File does not exist %s', uid_lookup_path)
        if not tf.gfile.Exists(label_lookup_path):
          tf.logging.fatal('File does not exist %s', label_lookup_path)
    
        # Loads mapping from string UID to human-readable string
        proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
        uid_to_human = {}
        p = re.compile(r'[nd]*[ S,]*')
        for line in proto_as_ascii_lines:
          parsed_items = p.findall(line)
          uid = parsed_items[0]
          human_string = parsed_items[2]
          uid_to_human[uid] = human_string
    
        # Loads mapping from string UID to integer node ID.
        node_id_to_uid = {}
        proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
        for line in proto_as_ascii:
          if line.startswith('  target_class:'):
            target_class = int(line.split(': ')[1])
          if line.startswith('  target_class_string:'):
            target_class_string = line.split(': ')[1]
            node_id_to_uid[target_class] = target_class_string[1:-2]
    
        # Loads the final mapping of integer node ID to human-readable string
        node_id_to_name = {}
        for key, val in node_id_to_uid.items():
          if val not in uid_to_human:
            tf.logging.fatal('Failed to locate: %s', val)
          name = uid_to_human[val]
          node_id_to_name[key] = name
    
        return node_id_to_name
    
      def id_to_string(self, node_id):
        if node_id not in self.node_lookup:
          return ''
        return self.node_lookup[node_id]
    
    #读取训练好的Inception-v3模型来创建graph
    def create_graph():
      with tf.gfile.FastGFile(os.path.join(
          model_dir, 'classify_image_graph_def.pb'), 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        tf.import_graph_def(graph_def, name='')
    
    
    #读取图片
    image_data = tf.gfile.FastGFile(image, 'rb').read()
    
    #创建graph
    create_graph()
    
    sess=tf.Session()
    #Inception-v3模型的最后一层softmax的输出
    softmax_tensor= sess.graph.get_tensor_by_name('softmax:0')
    #输入图像数据,得到softmax概率值(一个shape=(1,1008)的向量)
    predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})
    #(1,1008)->(1008,)
    predictions = np.squeeze(predictions)
    
    # ID --> English string label.
    node_lookup = NodeLookup()
    #取出前5个概率最大的值(top-5)
    top_5 = predictions.argsort()[-5:][::-1]
    for node_id in top_5:
      human_string = node_lookup.id_to_string(node_id)
      score = predictions[node_id]
      print('%s (score = %.5f)' % (human_string, score))
      
    sess.close()

    最后输出:

    tiger cat (score = 0.40316)
    Egyptian cat (score = 0.21686)
    tabby, tabby cat (score = 0.21348)
    lynx, catamount (score = 0.01403)
    Persian cat (score = 0.00394)

  • 相关阅读:
    ASP.NET中Session,Application,Viewstate,Cache,隐藏域和带参数的传接收值的用法
    JS页面跳转搜集
    SQL中常用的日期转化
    DIV+CSS兼容性解决IE6/IE7/FF浏览器的通用方法
    C#中将数据导出为EXCEL方式汇总
    正则表达式大全
    ASP.NET中Cookie用法小节
    div+CSS浏览器兼容问题整理
    站长常用的200个js代码
    [转]主机和终端
  • 原文地址:https://www.cnblogs.com/denny402/p/6942580.html
Copyright © 2011-2022 走看看