zoukankan      html  css  js  c++  java
  • pytorch学习: 构建网络模型的几种方法

    利用pytorch来构建网络模型有很多种方法,以下简单列出其中的四种。

    假设构建一个网络模型如下:

    卷积层--》Relu层--》池化层--》全连接层--》Relu层--》全连接层

    首先导入几种方法用到的包:

    import torch
    import torch.nn.functional as F
    from collections import OrderedDict

    第一种方法

    # Method 1 -----------------------------------------
    
    class Net1(torch.nn.Module):
        def __init__(self):
            super(Net1, self).__init__()
            self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
            self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
            self.dense2 = torch.nn.Linear(128, 10)
    
        def forward(self, x):
            x = F.max_pool2d(F.relu(self.conv(x)), 2)
            x = x.view(x.size(0), -1)
            x = F.relu(self.dense1(x))
            x = self.dense2(x)
            return x
    
    print("Method 1:")
    model1 = Net1()
    print(model1)

    这种方法比较常用,早期的教程通常就是使用这种方法。

    第二种方法

    # Method 2 ------------------------------------------
    class Net2(torch.nn.Module):
        def __init__(self):
            super(Net2, self).__init__()
            self.conv = torch.nn.Sequential(
                torch.nn.Conv2d(3, 32, 3, 1, 1),
                torch.nn.ReLU(),
                torch.nn.MaxPool2d(2))
            self.dense = torch.nn.Sequential(
                torch.nn.Linear(32 * 3 * 3, 128),
                torch.nn.ReLU(),
                torch.nn.Linear(128, 10)
            )
    
        def forward(self, x):
            conv_out = self.conv1(x)
            res = conv_out.view(conv_out.size(0), -1)
            out = self.dense(res)
            return out
    
    print("Method 2:")
    model2 = Net2()
    print(model2)

    这种方法利用torch.nn.Sequential()容器进行快速搭建,模型的各层被顺序添加到容器中。缺点是每层的编号是默认的阿拉伯数字,不易区分。

    第三种方法:

    # Method 3 -------------------------------
    class Net3(torch.nn.Module):
        def __init__(self):
            super(Net3, self).__init__()
            self.conv=torch.nn.Sequential()
            self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
            self.conv.add_module("relu1",torch.nn.ReLU())
            self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
            self.dense = torch.nn.Sequential()
            self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
            self.dense.add_module("relu2",torch.nn.ReLU())
            self.dense.add_module("dense2",torch.nn.Linear(128, 10))
    
        def forward(self, x):
            conv_out = self.conv1(x)
            res = conv_out.view(conv_out.size(0), -1)
            out = self.dense(res)
            return out
    
    print("Method 3:")
    model3 = Net3()
    print(model3)

    这种方法是对第二种方法的改进:通过add_module()添加每一层,并且为每一层增加了一个单独的名字。

    第四种方法:

    # Method 4 ------------------------------------------
    class Net4(torch.nn.Module):
        def __init__(self):
            super(Net4, self).__init__()
            self.conv = torch.nn.Sequential(
                OrderedDict(
                    [
                        ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
                        ("relu1", torch.nn.ReLU()),
                        ("pool", torch.nn.MaxPool2d(2))
                    ]
                ))
    
            self.dense = torch.nn.Sequential(
                OrderedDict([
                    ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
                    ("relu2", torch.nn.ReLU()),
                    ("dense2", torch.nn.Linear(128, 10))
                ])
            )
    
        def forward(self, x):
            conv_out = self.conv1(x)
            res = conv_out.view(conv_out.size(0), -1)
            out = self.dense(res)
            return out
    
    print("Method 4:")
    model4 = Net4()
    print(model4)

    是第三种方法的另外一种写法,通过字典的形式添加每一层,并且设置单独的层名称。

    完整代码:

    import torch
    import torch.nn.functional as F
    from collections import OrderedDict
    
    # Method 1 -----------------------------------------
    
    class Net1(torch.nn.Module):
        def __init__(self):
            super(Net1, self).__init__()
            self.conv1 = torch.nn.Conv2d(3, 32, 3, 1, 1)
            self.dense1 = torch.nn.Linear(32 * 3 * 3, 128)
            self.dense2 = torch.nn.Linear(128, 10)
    
        def forward(self, x):
            x = F.max_pool2d(F.relu(self.conv(x)), 2)
            x = x.view(x.size(0), -1)
            x = F.relu(self.dense1(x))
            x = self.dense2()
            return x
    
    print("Method 1:")
    model1 = Net1()
    print(model1)
    
    
    # Method 2 ------------------------------------------
    class Net2(torch.nn.Module):
        def __init__(self):
            super(Net2, self).__init__()
            self.conv = torch.nn.Sequential(
                torch.nn.Conv2d(3, 32, 3, 1, 1),
                torch.nn.ReLU(),
                torch.nn.MaxPool2d(2))
            self.dense = torch.nn.Sequential(
                torch.nn.Linear(32 * 3 * 3, 128),
                torch.nn.ReLU(),
                torch.nn.Linear(128, 10)
            )
    
        def forward(self, x):
            conv_out = self.conv1(x)
            res = conv_out.view(conv_out.size(0), -1)
            out = self.dense(res)
            return out
    
    print("Method 2:")
    model2 = Net2()
    print(model2)
    
    
    # Method 3 -------------------------------
    class Net3(torch.nn.Module):
        def __init__(self):
            super(Net3, self).__init__()
            self.conv=torch.nn.Sequential()
            self.conv.add_module("conv1",torch.nn.Conv2d(3, 32, 3, 1, 1))
            self.conv.add_module("relu1",torch.nn.ReLU())
            self.conv.add_module("pool1",torch.nn.MaxPool2d(2))
            self.dense = torch.nn.Sequential()
            self.dense.add_module("dense1",torch.nn.Linear(32 * 3 * 3, 128))
            self.dense.add_module("relu2",torch.nn.ReLU())
            self.dense.add_module("dense2",torch.nn.Linear(128, 10))
    
        def forward(self, x):
            conv_out = self.conv1(x)
            res = conv_out.view(conv_out.size(0), -1)
            out = self.dense(res)
            return out
    
    print("Method 3:")
    model3 = Net3()
    print(model3)
    
    
    
    # Method 4 ------------------------------------------
    class Net4(torch.nn.Module):
        def __init__(self):
            super(Net4, self).__init__()
            self.conv = torch.nn.Sequential(
                OrderedDict(
                    [
                        ("conv1", torch.nn.Conv2d(3, 32, 3, 1, 1)),
                        ("relu1", torch.nn.ReLU()),
                        ("pool", torch.nn.MaxPool2d(2))
                    ]
                ))
    
            self.dense = torch.nn.Sequential(
                OrderedDict([
                    ("dense1", torch.nn.Linear(32 * 3 * 3, 128)),
                    ("relu2", torch.nn.ReLU()),
                    ("dense2", torch.nn.Linear(128, 10))
                ])
            )
    
        def forward(self, x):
            conv_out = self.conv1(x)
            res = conv_out.view(conv_out.size(0), -1)
            out = self.dense(res)
            return out
    
    print("Method 4:")
    model4 = Net4()
    print(model4)
    View Code
  • 相关阅读:
    C#方法重载 -0024
    C#表达式体方法 (expression-bodied method )
    C# 匿名类型 -0022
    C# 不可变类型 -0021
    C# 属性 -0020
    C# readonly和const -0019
    C# 类的静态成员和实例成员 -0018
    C#中类和结构体的区别 -0017
    C#预处理器指令 -0016
    微信小程序TabBar定义和配置
  • 原文地址:https://www.cnblogs.com/denny402/p/7593301.html
Copyright © 2011-2022 走看看