zoukankan      html  css  js  c++  java
  • TensorFlow

     

    TensorFlow

    标签: 深度学习谷歌开源TensorFlow
     分类:

    Google发布了开源深度学习工具TensorFlow。

    根据官方教程  http://tensorflow.org/tutorials/mnist/beginners/index.md  试用。

    操作系统是ubuntu 14.04,64位,python 2.7,已经安装足够的python包。

    1. 安装

        1.1 参考文档 http://tensorflow.org/get_started/os_setup.md#binary_installation
        
        1.2 用pip安装,需要用代理,否则连不上,这个是本地ssh到vps出去的。

        sudo pip install https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.5.0-cp27-none-linux_x86_64.whl --proxy http://127.0.0.1:3128

        1.3 注意,我的py2.7已经安装了足够的包,如python-dev,numpy,swig等等。如果遇到缺少相应包的问题,先安装必须的包。

    2. 第一个demo,test.py
    ------------------------------
    import tensorflow as tf

    hello = tf.constant('Hello, TensorFlow!')
    sess = tf.Session()
    print sess.run(hello)

    a = tf.constant(10)
    b = tf.constant(32)
    print sess.run(a+b)

    ------------------------------


    3. mnist手写识别
        3.1 下载数据库 
        在http://yann.lecun.com/exdb/mnist/下载上面提到的4个gz文件,放到本地目录如 /tmp/mnist

        3.2 下载input_data.py,放在/home/tim/test目录下
        https://tensorflow.googlesource.com/tensorflow/+/master/tensorflow/g3doc/tutorials/mnist/input_data.py

        3.3 在/home/tim/test目录下创建文件test_tensor_flow_mnist.py,内容如下
    -----------------------
    #!/usr/bin/env python 

    import input_data
    import tensorflow as tf

    mnist = input_data.read_data_sets("/tmp/mnist", one_hot=True)

    x = tf.placeholder("float", [None, 784])
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    y = tf.nn.softmax(tf.matmul(x,W) + b)
    y_ = tf.placeholder("float", [None,10])
    cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    init = tf.initialize_all_variables()
    sess = tf.Session()
    sess.run(init)

    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

    correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels})
    -----------------------

    3.4 运行。大概之需要几秒钟时间,输出结果是91%左右。

    4. 关于版本

    4.1  pip version


    pip 1.5.4 from /usr/lib/python2.7/dist-packages (python 2.7)


    4.2 已经安装的python包

        有一些是用easy_install安装的,大部分是pip安装的。

    pip freeze


    Jinja2==2.7.2
    MarkupSafe==0.18
    MySQL-python==1.2.3
    PAM==0.4.2
    Pillow==2.3.0
    Twisted-Core==13.2.0
    Twisted-Web==13.2.0
    adium-theme-ubuntu==0.3.4
    apt-xapian-index==0.45
    argparse==1.2.1
    beautifulsoup4==4.2.1
    chardet==2.0.1
    colorama==0.2.5
    command-not-found==0.3
    cvxopt==1.1.4
    debtagshw==0.1
    decorator==3.4.0
    defer==1.0.6
    dirspec==13.10
    duplicity==0.6.23
    fp-growth==0.1.2
    html5lib==0.999
    httplib2==0.8
    ipython==1.2.1
    joblib==0.7.1
    lockfile==0.8
    lxml==3.3.3
    matplotlib==1.4.3
    nose==1.3.1
    numexpr==2.2.2
    numpy==1.9.2
    oauthlib==0.6.1
    oneconf==0.3.7
    openpyxl==1.7.0
    pandas==0.13.1
    patsy==0.2.1
    pexpect==3.1
    piston-mini-client==0.7.5
    pyOpenSSL==0.13
    pycrypto==2.6.1
    pycups==1.9.66
    pycurl==7.19.3
    pygobject==3.12.0
    pygraphviz==1.2
    pyparsing==2.0.3
    pyserial==2.6
    pysmbc==1.0.14.1
    python-apt==0.9.3.5
    python-dateutil==2.4.2
    python-debian==0.1.21-nmu2ubuntu2
    pytz==2012c
    pyxdg==0.25
    pyzmq==14.0.1
    reportlab==3.0
    requests==2.2.1
    scipy==0.13.3
    sessioninstaller==0.0.0
    simplegeneric==0.8.1
    simplejson==3.3.1
    six==1.10.0
    software-center-aptd-plugins==0.0.0
    ssh-import-id==3.21
    statsmodels==0.5.0
    sympy==0.7.4.1
    system-service==0.1.6
    tables==3.1.1
    tensorflow==0.5.0
    tornado==3.1.1
    unity-lens-photos==1.0
    urllib3==1.7.1
    vboxapi==1.0
    wheel==0.24.0
    wsgiref==0.1.2
    xdiagnose==3.6.3build2
    xlrd==0.9.2
    xlwt==0.7.5
    zope.interface==4.0.5

  • 相关阅读:
    Neko's loop HDU-6444(网络赛1007)
    Parameters
    SETLOCAL
    RD / RMDIR Command
    devenv 命令用法
    Cannot determine the location of the VS Common Tools folder.
    'DEVENV' is not recognized as an internal or external command,
    How to change Visual Studio default environment setting
    error signing assembly unknown error
    What is the Xcopy Command?:
  • 原文地址:https://www.cnblogs.com/developer-ios/p/5014885.html
Copyright © 2011-2022 走看看