zoukankan      html  css  js  c++  java
  • 对线性模型进行最小二乘法学习的实例(使用三角多项式基函数 Python实现)

    该文为个人学习时的学习笔记。最小二乘法在统计学中需要验证数据的多重共性性等问题,需要做相关的假设检验,这里我们假设一切为理想状态。

    最小二乘法   一个简单的应用就是进行线性模型的拟合,一般情况下我们有一组数据(即数据集)比如二维数据,(x, y), x为横坐标数值, y为纵坐标数值, 这里我们可以假设该模型符合一个多项式的表达,本文中我们假设该模型可以使用一个带有常数项的16维模型,即包含15个未知参数的模型来表示。

    本文中采用50个数据点,每个数据点都符合一个包含15个未知参数的模型,使用最小二乘法求出模型参数,然后用1000个点来表示出该模型的一段直观显示。

    #!/usr/bin/env python
    #encoding:UTF-8
    import numpy as np
    import matplotlib.pyplot as plt
    
    n=50
    N=1000
    
    x=np.linspace(-3, 3, n)
    X=np.linspace(-3, 3, N)
    
    pi=np.pi*x
    y=np.sin(pi)/pi +0.1*x + 0.05*np.random.random(n)
    
    p=np.ones((n, 1))
    P=np.ones((N, 1))
    
    for i in xrange(15):
        p=np.c_[p, np.sin((2*i+1)*x/2.0)]
        p=np.c_[p, np.cos((2*i+2)*x/2.0)]
    
        P=np.c_[P, np.sin((2*i+1)*X/2.0)]
        P=np.c_[P, np.cos((2*i+2)*X/2.0)]
    
    # t 为矩阵p的伪逆矩阵
    t=np.linalg.pinv(p)
    # w 为矩阵t和向量y的矢量乘
    w=np.dot(t, y)
    
    F=np.dot(P, w)
    
    plt.plot(x, y, 'o')
    plt.plot(X, F)
    plt.show()

  • 相关阅读:
    C# WinForm多线程(一)Thread类库
    ASP.NET执行循序
    SQLSERVER2014的内存优化表
    C# 5.0 Async函数的提示和技巧
    WPF 绑定
    使用 Cordova+Visual Studio 创建跨平台移动应用(3)
    使用 Cordova+Visual Studio 创建跨平台移动应用(2)
    使用 WPF 创建预加载控件
    A WPF/MVVM Countdown Timer
    使用WPF创建无边框窗体
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/7489929.html
Copyright © 2011-2022 走看看