Given s1, s2, s3, find whether s3 is formed by the interleaving of s1 and s2.
For example,
Given:
s1 = "aabcc"
,
s2 = "dbbca"
,
When s3 = "aadbbcbcac"
, return true.
When s3 = "aadbbbaccc"
, return false.
思路一:dfs,递归,超时
Time Limit Exceeded
class Solution { public: bool dfs(int idx1, int idx2,int idx3, string s1, string s2, string s3) { //cout << "idx1 " << idx1 << endl; //cout << "idx2 " << idx2 << endl; //cout << "idx3 " << idx3 << endl; if(idx3 == s3.size()) { if( idx2 == s2.size() && idx1 == s1.size()) return true; else return false; } if(s1[idx1] == s3[idx3] && dfs(idx1+1,idx2,idx3+1,s1,s2,s3)) return true; if(s2[idx2] == s3[idx3] && dfs(idx1,idx2+1,idx3+1,s1,s2,s3)) return true; return false; } bool isInterleave(string s1, string s2, string s3) { if((s1.size() + s2.size()) != s3.size()) return false; return dfs(0,0,0,s1,s2,s3); } };
思路二:dp
设状态 f[i][j],表示 s1[0,i-1] 和 s2[0,j-1],匹配 s3[0, i+j-1]。如果 s1 的最后一个字符等
于 s3 的最后一个字符,则 f[i][j]=f[i-1][j];如果 s2 的最后一个字符等于 s3 的最后一个字符,
则 f[i][j]=f[i][j-1]。因此状态转移方程如下:
f[i][j] = (s1[i - 1] == s3 [i + j - 1] && f[i - 1][j])
|| (s2[j - 1] == s3 [i + j - 1] && f[i][j - 1]);
class Solution { public: bool isInterleave(string s1, string s2, string s3) { if((s1.size() + s2.size()) != s3.size()) return false; //f[i][j] indicates s1[0 ~ i-1] and s2[0 ~ j-1] can consititue s3[0 ~ i+j-1] vector<bool> tmp(s2.size() + 1 ,false);//colum size vector<vector<bool> > f(s1.size() + 1, tmp);//row size f[0][0] = true;// indicate null str + null str can constitue null str for(int i = 1; i <=s2.size(); i++ ) { if(f[0][i-1] && s2[i-1] == s3[i-1]) f[0][i] = true; } for(int i = 1; i <=s1.size(); i++ ) { if(f[i-1][0] && s1[i-1] == s3[i-1]) f[i][0] = true; } for(int i = 1; i <= s1.size(); i++) { for(int j = 1; j <= s2.size(); j++) { if((f[i-1][j] && s1[i-1] == s3[i+j-1]) || (f[i][j-1] && s2[j-1] == s3[i+j-1])) f[i][j] = true; } } return f[s1.size()][s2.size()]; } };