zoukankan      html  css  js  c++  java
  • Codeforces 761D

    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Dasha logged into the system and began to solve problems. One of them is as follows:

    Given two sequences a and b of length n each you need to write a sequence c of length n, the i-th element of which is calculated as follows: ci = bi - ai.

    About sequences a and b we know that their elements are in the range from l to r. More formally, elements satisfy the following conditions: l ≤ ai ≤ r and l ≤ bi ≤ r. About sequence c we know that all its elements are distinct.

    Dasha wrote a solution to that problem quickly, but checking her work on the standard test was not so easy. Due to an error in the test system only the sequence a and the compressed sequence of the sequence c were known from that test.

    Let's give the definition to a compressed sequence. A compressed sequence of sequence c of length n is a sequence p of length n, so that pi equals to the number of integers which are less than or equal to ci in the sequence c. For example, for the sequence c = [250, 200, 300, 100, 50] the compressed sequence will be p = [4, 3, 5, 2, 1]. Pay attention that in c all integers are distinct. Consequently, the compressed sequence contains all integers from 1 to n inclusively.

    Help Dasha to find any sequence b for which the calculated compressed sequence of sequence c is correct.

    Input

    The first line contains three integers nlr (1 ≤ n ≤ 105, 1 ≤ l ≤ r ≤ 109) — the length of the sequence and boundaries of the segment where the elements of sequences a and b are.

    The next line contains n integers a1,  a2,  ...,  an (l ≤ ai ≤ r) — the elements of the sequence a.

    The next line contains n distinct integers p1,  p2,  ...,  pn (1 ≤ pi ≤ n) — the compressed sequence of the sequence c.

    Output

    If there is no the suitable sequence b, then in the only line print "-1".

    Otherwise, in the only line print n integers — the elements of any suitable sequence b.

    Examples
    input
    5 1 5
    1 1 1 1 1
    3 1 5 4 2
    
    output
    3 1 5 4 2 
    input
    4 2 9
    3 4 8 9
    3 2 1 4
    
    output
    2 2 2 9 
    input
    6 1 5
    1 1 1 1 1 1
    2 3 5 4 1 6
    
    output
    -1

    给一个数列a,给一个数列p,已知数列p是数列c按个元素大小编号1~n后的所谓的压缩数列,求任意一个符合条件的数列b=a+c(条件:数列a、b都在某个范围内);

    思路:

    例如对于第二组样例,

    3 4 8 9

    根据 3 2 1 4的大小重排后得到

    8 4 3 9 (a)

    1 2 3 4 (p)

    相对应的,不妨假设数列b对应的第一位为下界2,那么可知数列c的对应第一位为-6

     

    8 4 3 9 (a)

    1 2 3 4 (p)

    -6          (c)

    2           (b)

    再看第二位,不妨假设b还是下界,则c为-2,-2 > -6,符合p给定的大小顺序,则可以有:

     

    8 4 3 9 (a)

    1 2 3 4 (p)

    -6 -2        (c)

    2  2      (b)

    再到第三位,不妨设b还是下界,则c为-1,依然符合p的大小顺序

    8  4  3  9 (a)

    1  2  3  4 (p)

    -6 -2 -1     (c)

    2  2  2     (b)

    再到第四位,设b为下界,则c为-7,这时候发现不符合顺序,那么就让c等于前一位+1

     

    8   4   3   9  (a)

    1   2   3   4  (p)

    -6  -2  -1  0  (c)

     2   2   2   9   (b)

    这时候,得到的b为9,不大于上界,符合条件,因此我们得到了一个符合条件的b:

     

     2   2   2   9   (b)

    最后我们在将数列b排回3 2 1 4的顺序即可(这步很重要……在这个样例里重新排序之后没有变化,但其他样例就不一定了……)

     

    3   2   1   4  (p)

     2   2   2   9   (b)

    感觉自己写的代码一点都不优雅……(羞耻……

     1 #include<cstdio>
     2 int main()
     3 {
     4     int n,l,r,a[100000+5],temp_a[100000+5],p[100000+5],c[100000+5];
     5     scanf("%d %d %d",&n,&l,&r);
     6     for(int i=1;i<=n;i++) scanf("%d",&temp_a[i]);
     7     for(int i=1;i<=n;i++) scanf("%d",&p[i]);
     8     for(int i=1;i<=n;i++) a[ p[i] ]=temp_a[i];
     9     
    10     //for(int i=1;i<=n;i++) printf("%d ",a[i]);printf("
    ");
    11     
    12     int now=l-a[1]-1;
    13     for(int i=1;i<=n;i++)
    14     {
    15         if(l-a[i] > now) c[i]=(now=l-a[i]);
    16         else c[i]=(now+=1);
    17         if( c[i]+a[i] > r ){
    18             printf("-1
    ");
    19             return 0;
    20         }
    21     }
    22     
    23     for(int i=1;i<=n;i++){
    24         if(i!=1) printf(" ");
    25         printf("%d",c[p[i]]+a[p[i]]);
    26     }
    27     printf("
    ");
    28     return 0;
    29 }


  • 相关阅读:
    keyset与entryset
    solr4.9r+ Eclipse 4.3+ tomcat 7.5 +winds7(二)
    如何解决This system is not registered with RHN.
    堆和栈的差别(转过无数次的文章)
    墨菲定律、二八法则、马太效应、手表定理、“不值得”定律、彼得原理、零和游戏、华盛顿合作规律、酒与污水定律、水桶定律、蘑菇管理原理、钱的问题、奥卡姆剃刀等13条是左右人生的金科玉律
    atitit.软件开发GUI 布局管理优缺点总结java swing wpf web html c++ qt php asp.net winform
    漫谈并发编程(二):java线程的创建与基本控制
    exosip
    PostgreSQL服务端监听设置及client连接方法
    APK反编译。
  • 原文地址:https://www.cnblogs.com/dilthey/p/6804164.html
Copyright © 2011-2022 走看看