题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3091
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 327680/327680 K (Java/Others)
Problem Description
One day , Partychen gets several beads , he wants to make these beads a necklace . But not every beads can link to each other, every bead should link to some particular bead(s). Now , Partychen wants to know how many kinds of necklace he can make.
Input
It consists of multi-case .
Every case start with two integers N,M ( 1<=N<=18,M<=N*N )
The followed M lines contains two integers a,b ( 1<=a,b<=N ) which means the ath bead and the bth bead are able to be linked.
Every case start with two integers N,M ( 1<=N<=18,M<=N*N )
The followed M lines contains two integers a,b ( 1<=a,b<=N ) which means the ath bead and the bth bead are able to be linked.
Output
An integer , which means the number of kinds that the
necklace could be.
Sample Input
3 3
1 2
1 3
2 3
Sample Output
2
题意:
给你N个珠子,这些珠子编号为1~N,然后给出可以连在一起的两个珠子的编号,求把他们全部串起来有多少种方案。
样例有两种项链穿法:
①:“1-2-3-1”(包含“2-3-1-2”,“3-1-2-3”这两种情况);
②:“1-3-2-1”(包含“3-2-1-3”,“2-1-3-2”这两种情况);
可以看出,珠子串出的项链呈环状,但是珠子有规定好的逆时针或者顺时针的顺序,不能翻面;
题解:
设 i 表示状态:i转化为二进制数后,第k位(从右往左数)为0,表示k号珠子还没穿上去;为1,就代表已经穿上去了;
设 j 代表当前状态下,最后一个穿上去的是j号珠子;
设dp[i][j]表示在(i,j)状态下的方案数;
AC代码:
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 using namespace std; 5 typedef long long ll; 6 int n,m; 7 bool link[20][20]; 8 ll dp[1<<18][20],ans; 9 int main() 10 { 11 while(scanf("%d%d",&n,&m)!=EOF) 12 { 13 memset(link,0,sizeof(link)); 14 memset(dp,0,sizeof(dp)); 15 for(int i=1,u,v;i<=m;i++) 16 { 17 scanf("%d%d",&u,&v); 18 link[v][u]=link[u][v]=1; 19 } 20 21 int ed_state=(1<<n)-1; 22 dp[1][1]=1; 23 for(int state=1;state<=ed_state;state++) 24 { 25 for(int i=1;i<=n;i++) 26 { 27 if( (state&(1<<(i-1)))==0 || dp[state][i]==0 ) continue; 28 for(int j=1;j<=n;j++) 29 { 30 if(!link[i][j]) continue;//这两颗珠子不能连在一起,跳过 31 if( state & (1<<(j-1)) ) continue;//这颗珠子已经在项链上,跳过 32 int next_state=state|(1<<(j-1)); 33 dp[next_state][j]+=dp[state][i]; 34 //printf("dp[%d][%d]=%I64d ",next_state,next_bead,dp[next_state][next_bead]); 35 } 36 } 37 } 38 39 ans=0; 40 for(int i=1;i<=n;i++) if(link[i][1]) ans+=dp[ed_state][i]; 41 printf("%I64d ",ans); 42 } 43 }