题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1045
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
A blockhouse is a small castle that has four openings through which to shoot. The four openings are facing North, East, South, and West, respectively. There will be one machine gun shooting through each opening.
Here we assume that a bullet is so powerful that it can run across any distance and destroy a blockhouse on its way. On the other hand, a wall is so strongly built that can stop the bullets.
The goal is to place as many blockhouses in a city as possible so that no two can destroy each other. A configuration of blockhouses is legal provided that no two blockhouses are on the same horizontal row or vertical column in a map unless there is at least one wall separating them. In this problem we will consider small square cities (at most 4x4) that contain walls through which bullets cannot run through.
The following image shows five pictures of the same board. The first picture is the empty board, the second and third pictures show legal configurations, and the fourth and fifth pictures show illegal configurations. For this board, the maximum number of blockhouses in a legal configuration is 5; the second picture shows one way to do it, but there are several other ways.
Your task is to write a program that, given a description of a map, calculates the maximum number of blockhouses that can be placed in the city in a legal configuration.
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 int n; 5 char map[6][6]; 6 int ans; 7 void dfs(int now,int num) 8 { 9 if(now==n*n+1) 10 { 11 ans=max(ans,num); 12 return; 13 } 14 15 int row=(now-1)/n+1, col=(now-1)%n+1; 16 17 if(map[row][col]=='X') 18 { 19 dfs(now+1,num); 20 return; 21 } 22 23 bool ok=1; 24 for(int i=col-1;i>=1;i--)//向前遍历当前行 25 { 26 if(map[row][i]=='B') 27 { 28 ok=0; 29 break; 30 } 31 if(map[row][i]=='X') break; 32 } 33 for(int i=row-1;i>=1;i--)//向前遍历当前列 34 { 35 if(map[i][col]=='B') 36 { 37 ok=0; 38 break; 39 } 40 if(map[i][col]=='X') break; 41 } 42 if(ok) 43 { 44 map[row][col]='B'; 45 dfs(now+1,num+1); 46 map[row][col]='.'; 47 } 48 dfs(now+1,num); 49 return; 50 } 51 int main() 52 { 53 while(scanf("%d",&n) && n!=0) 54 { 55 for(int i=1;i<=n;i++) scanf("%s",map[i]+1); 56 ans=0; 57 dfs(1,0); 58 printf("%d ",ans); 59 } 60 }
方法②
用二分图最大匹配来做本题。
前置知识点:http://www.cnblogs.com/dilthey/p/7647630.html
建模:
我们对这个方阵的每一行,以方阵的边界或者一堵墙为端点,我们对每一个“行段”(从一端开始到一端结束)的方格组标记为一个顶点,全部放入L集;
例如:
再对这个方阵的每一列,依然以方阵的边界或者一堵墙为端点,我们对每一个“列段”(从一端开始到一端结束)的方格组标记为一个顶点,全部放入R集;
例如:
那么,对应于方格内的每个格子,它们都有一个L集内的顶点编号,一个R集内的顶点编号,我们就建立一条连接两个这两个顶点的边;
then,根据匹配的要求,任意两条边都没有公共顶点,
即任意一个格子,都独占一个L集内的顶点,一个R集内的顶点,
即如果这里放了一个碉堡,那么它都独占了它所在的一个“行段”,一个“列段”,这就满足了任意两个碉堡间不会互相攻击;
那么,任意一种碉堡的放置方案,都对应一个「匹配」,我们找到最大匹配,就找到了放置碉堡最多的方案。
AC代码:
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #define MAX 35 5 using namespace std; 6 //匈牙利算法 - st 7 struct Edge{ 8 int u,v; 9 }; 10 vector<Edge> E; 11 vector<int> G[MAX]; 12 int lN,rN; 13 int matching[MAX]; 14 int vis[MAX]; 15 void init(int l,int r) 16 { 17 E.clear(); 18 for(int i=l;i<=r;i++) G[i].clear(); 19 } 20 void add_edge(int u,int v) 21 { 22 E.push_back((Edge){u,v}); 23 E.push_back((Edge){v,u}); 24 int _size=E.size(); 25 G[u].push_back(_size-2); 26 G[v].push_back(_size-1); 27 } 28 bool dfs(int u) 29 { 30 for(int i=0,_size=G[u].size();i<_size;i++) 31 { 32 int v=E[G[u][i]].v; 33 if (!vis[v]) 34 { 35 vis[v]=1; 36 if(!matching[v] || dfs(matching[v])) 37 { 38 matching[v]=u; 39 matching[u]=v; 40 return true; 41 } 42 } 43 } 44 return false; 45 } 46 int hungarian() 47 { 48 int ret=0; 49 memset(matching,0,sizeof(matching)); 50 for(int i=1;i<=lN;i++) 51 { 52 if(!matching[i]) 53 { 54 memset(vis,0,sizeof(vis)); 55 if(dfs(i)) ret++; 56 } 57 } 58 return ret; 59 } 60 //匈牙利算法 - ed 61 int main() 62 { 63 int n; 64 char mp[6][6]; 65 int row_id[5][5],col_id[5][5]; 66 while(scanf("%d",&n) && n!=0) 67 { 68 for(int i=1;i<=n;i++) scanf("%s",mp[i]+1); 69 70 lN=0, rN=0; 71 for(int i=1;i<=n;i++)//对“行段”进行编号 72 { 73 for(int j=1;j<=n;j++) 74 { 75 if(mp[i][j]=='.') 76 { 77 if( j==1 || mp[i][j-1]=='X' ) row_id[i][j] = ++lN; 78 else row_id[i][j] = lN; 79 } 80 } 81 } 82 for(int j=1;j<=n;j++)//对“列段”进行编号 83 { 84 for(int i=1;i<=n;i++) 85 { 86 if(mp[i][j]=='.') 87 { 88 if( i==1 || mp[i-1][j]=='X' ) col_id[i][j] = lN + (++rN); 89 else col_id[i][j] = lN + rN; 90 } 91 } 92 } 93 94 init(1,lN+rN); 95 for(int i=1;i<=n;i++)//建边、建图 96 { 97 for(int j=1;j<=n;j++) 98 { 99 if(mp[i][j]=='X') continue; 100 add_edge(row_id[i][j],col_id[i][j]); 101 } 102 } 103 104 printf("%d ",hungarian()); 105 } 106 }
方法③
当然了,二分图最大匹配,也可以使用最大流来求解;
我们对二分图进行如此构建流网络:
建立超级源点s,超级汇点t;
对所有L集的点,连一条从s出发的边,容量为1;
对所有R集的点,连一条到达t的边,容量为1;
对原二分图本就存在的边,直接赋值容量=1,加入流网络;
最后求出最大流,即二分图的最大匹配。
AC代码:
1 #include<cstdio> 2 #include<cstring> 3 #include<vector> 4 #include<queue> 5 #define MAX 35 6 #define INF 0x3f3f3f3f 7 using namespace std; 8 struct Edge{ 9 int u,v,c,f; 10 }; 11 struct Dinic 12 { 13 int s,t; 14 vector<Edge> E; 15 vector<int> G[MAX]; 16 bool vis[MAX]; 17 int lev[MAX]; 18 int cur[MAX]; 19 void init(int l,int r) 20 { 21 E.clear(); 22 for(int i=l;i<=r;i++) G[i].clear(); 23 } 24 void addedge(int from,int to,int cap) 25 { 26 E.push_back((Edge){from,to,cap,0}); 27 E.push_back((Edge){to,from,0,0}); 28 int m=E.size(); 29 G[from].push_back(m-2); 30 G[to].push_back(m-1); 31 } 32 bool bfs() 33 { 34 memset(vis,0,sizeof(vis)); 35 queue<int> q; 36 q.push(s); 37 lev[s]=0; 38 vis[s]=1; 39 while(!q.empty()) 40 { 41 int now=q.front(); q.pop(); 42 for(int i=0,_size=G[now].size();i<_size;i++) 43 { 44 Edge edge=E[G[now][i]]; 45 int nex=edge.v; 46 if(!vis[nex] && edge.c>edge.f) 47 { 48 lev[nex]=lev[now]+1; 49 q.push(nex); 50 vis[nex]=1; 51 } 52 } 53 } 54 return vis[t]; 55 } 56 int dfs(int now,int aug) 57 { 58 if(now==t || aug==0) return aug; 59 int flow=0,f; 60 for(int& i=cur[now],_size=G[now].size();i<_size;i++) 61 { 62 Edge& edge=E[G[now][i]]; 63 int nex=edge.v; 64 if(lev[now]+1 == lev[nex] && (f=dfs(nex,min(aug,edge.c-edge.f)))>0) 65 { 66 edge.f+=f; 67 E[G[now][i]^1].f-=f; 68 flow+=f; 69 aug-=f; 70 if(!aug) break; 71 } 72 } 73 return flow; 74 } 75 int maxflow() 76 { 77 int flow=0; 78 while(bfs()) 79 { 80 memset(cur,0,sizeof(cur)); 81 flow+=dfs(s,INF); 82 } 83 return flow; 84 } 85 }dinic; 86 int main() 87 { 88 int n; 89 char mp[6][6]; 90 int row_id[5][5],col_id[5][5]; 91 while(scanf("%d",&n) && n!=0) 92 { 93 for(int i=1;i<=n;i++) scanf("%s",mp[i]+1); 94 95 int lN=0, rN=0; 96 for(int i=1;i<=n;i++)//对“行段”进行编号 97 { 98 for(int j=1;j<=n;j++) 99 { 100 if(mp[i][j]=='.') 101 { 102 if( j==1 || mp[i][j-1]=='X' ) row_id[i][j] = ++lN; 103 else row_id[i][j] = lN; 104 } 105 } 106 } 107 for(int j=1;j<=n;j++)//对“列段”进行编号 108 { 109 for(int i=1;i<=n;i++) 110 { 111 if(mp[i][j]=='.') 112 { 113 if( i==1 || mp[i-1][j]=='X' ) col_id[i][j] = lN + (++rN); 114 else col_id[i][j] = lN + rN; 115 } 116 } 117 } 118 119 dinic.init(0,lN+rN+1); 120 dinic.s=0, dinic.t=lN+rN+1; 121 for(int i=1;i<=lN;i++) dinic.addedge(dinic.s,i,1); 122 for(int i=1;i<=rN;i++) dinic.addedge(i+lN,dinic.t,1); 123 for(int i=1;i<=n;i++) 124 { 125 for(int j=1;j<=n;j++) 126 { 127 if(mp[i][j]=='X') continue; 128 dinic.addedge(row_id[i][j],col_id[i][j],1); 129 } 130 } 131 printf("%d ",dinic.maxflow()); 132 } 133 }
(当然,从复杂度上,就不难看出,用Dinic算法求二分图最大匹配比匈牙利算法慢。)