zoukankan      html  css  js  c++  java
  • UVA 12304

    题目链接:https://cn.vjudge.net/problem/UVA-12304

    题意:

    作为题目大合集,有以下一些要求:

    ①给出三角形三个点,求三角形外接圆,求外接圆的圆心和半径。

    ②给出三角形三个点,求三角形内接圆,求内接圆的圆心和半径。

    ③给出一个圆,和一个点,求过该点的圆的切线与x轴的夹角(0<=angle<180);

    ④给出一条直线,一个点p,指定半径r,求经过点p的与直线相切的半径为r的圆;

    ⑤给出两条直线,求与这两条直线相切的圆;

    ⑥给出两个圆,求同时与这两个圆相切的圆;

    题解:

    综合运用平面几何模板即可。

    AC代码:

    #include<bits/stdc++.h>
    using namespace std;
    
    //--------------------------------------计算几何模板 - st--------------------------------------
    
    const double eps = 1e-6;
    
    struct Point{
        double x,y;
        Point(double tx=0,double ty=0):x(tx),y(ty){}
    };
    typedef Point Vctor;
    
    //向量的加减乘除
    Vctor operator + (Vctor A,Vctor B){return Vctor(A.x+B.x,A.y+B.y);}
    Vctor operator - (Point A,Point B){return Vctor(A.x-B.x,A.y-B.y);}
    Vctor operator * (Vctor A,double p){return Vctor(A.x*p,A.y*p);}
    Vctor operator / (Vctor A,double p){return Vctor(A.x/p,A.y/p);}
    bool operator < (Point A,Point B){return A.x < B.x || (A.x == B.x && A.y < B.y);}
    
    struct Line{
        Point p;
        Vctor v;
        Line(Point p=Point(0,0),Vctor v=Vctor(0,0)):p(p),v(v){}
        Point point(double t){return p + v*t;} //获得直线上的距离p点t个单位长度的点
    };
    struct Circle{
        Point c;
        double r;
        Circle(Point tc=Point(0,0),double tr=0):c(tc),r(tr){}
        Point point(double a){return Point( c.x + cos(a)*r , c.y + sin(a)*r);}
    };
    
    int dcmp(double x)
    {
        if(fabs(x)<eps) return 0;
        else return (x<0)?(-1):(1);
    }
    bool operator == (Point A,Point B){return dcmp(A.x-B.x)==0 && dcmp(A.y-B.y)==0;}
    
    //向量的点积,长度,夹角
    double Dot(Vctor A,Vctor B){return A.x*B.x+A.y*B.y;}
    double Length(Vctor A){return sqrt(Dot(A,A));}
    double Angle(Vctor A,Vctor B){return acos(Dot(A,B)/Length(A)/Length(B));}
    
    //叉积,三角形面积
    double Cross(Vctor A,Vctor B){return A.x*B.y-A.y*B.x;}
    double TriangleArea(Point A,Point B,Point C){return Cross(B-A,C-A);}
    
    //向量的旋转,求向量的单位法线(即左转90度,然后长度归一)
    Vctor Rotate(Vctor A,double rad){return Vctor( A.x*cos(rad) - A.y*sin(rad) , A.x*sin(rad) + A.y*cos(rad) );}
    Vctor Normal(Vctor A)
    {
        double L = Length(A);
        return Vctor(-A.y/L, A.x/L);
    }
    
    //直线的交点
    Point getLineIntersection(Line L1,Line L2)
    {
        Vctor u = L1.p-L2.p;
        double t = Cross(L2.v,u)/Cross(L1.v,L2.v);
        return L1.p + L1.v*t;
    }
    
    //点到直线的距离
    double DistanceToLine(Point P,Line L)
    {
        return fabs(Cross(P-L.p,L.v))/Length(L.v);
    }
    
    //点到线段的距离
    double DistanceToSegment(Point P,Point A,Point B)
    {
        if(A==B) return Length(P-A);
        Vctor v1 = B-A, v2 = P-A, v3 = P-B;
        if (dcmp(Dot(v1,v2)) < 0) return Length(v2);
        else if (dcmp(Dot(v1,v3)) > 0) return Length(v3);
        else return fabs(Cross(v1,v2))/Length(v1);
    }
    
    //点到直线的映射
    Point getLineProjection(Point P,Line L)
    {
        return L.v + L.v*Dot(L.v,P-L.p)/Dot(L.v,L.v);
    }
    
    //判断线段是否规范相交
    bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2)
    {
        double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1),
               c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1);
        return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
    }
    
    //判断点是否在一条线段上
    bool OnSegment(Point P,Point a1,Point a2)
    {
        return dcmp(Cross(a1 - P,a2 - P))==0 && dcmp(Dot(a1 - P,a2 - P))<0;
    }
    
    //多边形面积
    double PolgonArea(Point *p,int n)
    {
        double area=0;
        for(int i=1;i<n-1;i++) area += Cross( p[i]-p[0] , p[i + 1]-p[0] );
        return area/2;
    }
    
    //判断圆与直线是否相交以及求出交点
    int getLineCircleIntersection(Line L,Circle C,vector<Point> &sol)
    {
        double t1,t2;
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a*a + c*c , f = 2*(a*b + c*d),  g = b*b + d*d - C.r*C.r;
        double delta = f*f - 4.0*e*g;
        if(dcmp(delta)<0) return 0;
        else if(dcmp(delta)==0)
        {
            t1 = t2 = -f/(2.0*e);
            sol.push_back(L.point(t1));
            return 1;
        }
        else
        {
            t1 = (-f-sqrt(delta))/(2.0*e); sol.push_back(L.point(t1));
            t2 = (-f+sqrt(delta))/(2.0*e); sol.push_back(L.point(t2));
            return 2;
        }
    }
    
    //判断并求出两圆的交点
    double angle(Vctor v){return atan2(v.y,v.x);}
    int getCircleIntersection(Circle C1,Circle C2,vector<Point> &sol)
    {
        double d = Length(C1.c - C2.c);
        //圆心重合
        if(dcmp(d)==0)
        {
            if(dcmp(C1.r-C2.r)==0) return -1; //两圆重合
            else return 0; //包含关系
        }
    
        //圆心不重合
        if(dcmp(C1.r+C2.r-d)<0) return 0; // 相离
        if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; // 包含
    
        double a = angle(C2.c - C1.c);
        double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
        sol.push_back(p1);
        if(p1==p2) return 1;
        sol.push_back(p2);
        return 2;
    }
    
    //求点到圆的切线
    int getTangents(Point p,Circle C,vector<Line> &sol)
    {
        Vctor u=C.c-p;
        double dis=Length(u);
        if(dis<C.r) return 0;
        else if(dcmp(dis-C.r) == 0)
        {
            sol.push_back(Line(p,Rotate(u,M_PI/2)));
            return 1;
        }
        else
        {
            double ang=asin(C.r/dis);
            sol.push_back(Line(p,Rotate(u,-ang)));
            sol.push_back(Line(p,Rotate(u,ang)));
            return 2;
        }
    }
    
    //求两圆的切线
    int getCircleTangents(Circle A,Circle B,Point *a,Point *b)
    {
        int cnt = 0;
        if(A.r<B.r){swap(A,B);swap(a,b);}
        //圆心距的平方
        double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y);
        double rdiff = A.r - B.r;
        double rsum = A.r + B.r;
        double base = angle(B.c - A.c);
        //重合有无限多条
        if(d2 == 0 && dcmp(A.r - B.r) == 0) return -1;
        //内切
        if(dcmp(d2-rdiff*rdiff) == 0)
        {
            a[cnt] = A.point(base);
            b[cnt] = B.point(base);
            cnt++;
            return 1;
        }
        //有外公切线
        double ang = acos((A.r - B.r) / sqrt(d2));
        a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
        a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
    
        //一条内切线
        if(dcmp(d2-rsum*rsum) == 0)
        {
            a[cnt] = A.point(base);
            b[cnt] = B.point(M_PI + base);
            cnt++;
        }//两条内切线
        else if(dcmp(d2-rsum*rsum) > 0)
        {
            double ang = acos((A.r + B.r) / sqrt(d2));
            a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
            a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
        }
        return cnt;
    }
    
    //--------------------------------------计算几何模板 - ed--------------------------------------
    
    
    Circle CircumscribedCircle(Point p1,Point p2,Point p3) //求外切圆,三点不能共线
    {
        double up,down,x,y,r;
        double& x1=p1.x, x2=p2.x, x3=p3.x;
        double& y1=p1.y, y2=p2.y, y3=p3.y;
    
        up = (pow(x1,2)-pow(x2,2) + pow(y1,2)-pow(y2,2))*(y1-y3) - (pow(x1,2)-pow(x3,2) + pow(y1,2)-pow(y3,2))*(y1-y2);
        down = 2*(y1-y3)*(x1-x2) - 2*(y1-y2)*(x1-x3);
        x = up/down;
    
        up = (pow(x1,2)-pow(x2,2) + pow(y1,2)-pow(y2,2))*(x1-x3) - (pow(x1,2)-pow(x3,2) + pow(y1,2)-pow(y3,2))*(x1-x2);
        down = 2*(y1-y2)*(x1-x3) - 2*(y1-y3)*(x1-x2);
        y = up/down;
    
        r = sqrt( pow(x1-x,2)+pow(y1-y,2) );
    
        return Circle(Point(x,y),r);
    }
    
    Circle InscribedCircle(Point p1,Point p2,Point p3) //求内切圆,三点不能共线
    {
        double a,b,c,x,y,r;
        double& x1=p1.x, x2=p2.x, x3=p3.x;
        double& y1=p1.y, y2=p2.y, y3=p3.y;
    
        a = sqrt( pow(x2-x3,2) + pow(y2-y3,2) );
        b = sqrt( pow(x3-x1,2) + pow(y3-y1,2) );
        c = sqrt( pow(x1-x2,2) + pow(y1-y2,2) );
    
        x = ( a*x1 + b*x2 + c*x3 )/( a+b+c );
        y = ( a*y1 + b*y2 + c*y3 )/( a+b+c );
    
        double p = (a+b+c)/2;
        r = sqrt( (p-a)*(p-b)*(p-c)/p );
    
        return Circle(Point(x,y),r);
    }
    
    bool Line_cmp(Line a,Line b){return a.v<b.v;}
    void TangentLineThroughPoint(Circle C,Point p)
    {
        vector<Line> Lines;
        int cnt=getTangents(p,C,Lines);
        vector<double> ans;
        for(int i=0;i<cnt;i++)
        {
            double ang=angle(Lines[i].v);
            if(ang<0) ang+=M_PI;
            if(!dcmp(ang-M_PI)) ang-=M_PI;
            ans.push_back(ang);
        }
        sort(ans.begin(),ans.end());
        printf("[");
        for(int i=0;i<ans.size();i++)
        {
            if(i!=0) printf(",");
            printf("%lf",180*ans[i]/M_PI);
        }
        printf("]
    ");
    }
    
    void CircleThroughAPointAndTangentToALineWithRadius(Point p,Point d1,Point d2,double r)
    {
        Vctor normal=Normal(d2-d1);
        normal=normal/Length(normal)*r;
        Line l1=Line(d1+normal,d2-d1), l2=Line(d1-normal,d2-d1);
        vector<Point> ans;
        getLineCircleIntersection(l1,Circle(p,r),ans);
        getLineCircleIntersection(l2,Circle(p,r),ans);
        sort(ans.begin(),ans.end());
        printf("[");
        for(int i=0;i<ans.size();i++)
        {
            if(i!=0) printf(",");
            printf("(%.6lf,%.6lf)",ans[i].x,ans[i].y);
        }
        printf("]
    ");
    }
    
    void CircleTangentToTwoLinesWithRadius(Line L1,Line L2,double r)
    {
        Vctor normal1=Normal(L1.v), normal2=Normal(L2.v);
        normal1=normal1/Length(normal1)*r;
        normal2=normal2/Length(normal2)*r;
        Line L1_a=Line(L1.p+normal1,L1.v);
        Line L1_b=Line(L1.p-normal1,L1.v);
        Line L2_a=Line(L2.p+normal2,L2.v);
        Line L2_b=Line(L2.p-normal2,L2.v);
        vector<Point> ans;
        ans.push_back(getLineIntersection(L1_a,L2_a));
        ans.push_back(getLineIntersection(L1_a,L2_b));
        ans.push_back(getLineIntersection(L1_b,L2_a));
        ans.push_back(getLineIntersection(L1_b,L2_b));
        sort(ans.begin(),ans.end());
        printf("[");
        for(int i=0;i<ans.size();i++)
        {
            if(i!=0) printf(",");
            printf("(%.6lf,%.6lf)",ans[i].x,ans[i].y);
        }
        printf("]
    ");
    }
    
    void CircleTangentToTwoDisjointCirclesWithRadius(Circle C1,Circle C2,double r)
    {
        C1.r+=r, C2.r+=r;
        vector<Point> ans;
        getCircleIntersection(C1,C2,ans);
        sort(ans.begin(),ans.end());
        printf("[");
        for(int i=0;i<ans.size();i++)
        {
            if(i!=0) printf(",");
            printf("(%.6lf,%.6lf)",ans[i].x,ans[i].y);
        }
        printf("]
    ");
    }
    
    int main()
    {
        string input;
        while(cin>>input)
        {
            if(input=="CircumscribedCircle")
            {
                Point p1,p2,p3;
                cin>>p1.x>>p1.y>>p2.x>>p2.y>>p3.x>>p3.y;
                Circle ans=CircumscribedCircle(p1,p2,p3);
                printf("(%.6lf,%.6lf,%.6lf)
    ",ans.c.x,ans.c.y,ans.r);
            }
            else if(input=="InscribedCircle")
            {
                Point p1,p2,p3;
                cin>>p1.x>>p1.y>>p2.x>>p2.y>>p3.x>>p3.y;
                Circle ans=InscribedCircle(p1,p2,p3);
                printf("(%.6lf,%.6lf,%.6lf)
    ",ans.c.x,ans.c.y,ans.r);
            }
            else if(input=="TangentLineThroughPoint")
            {
                Circle C;
                Point p;
                cin>>C.c.x>>C.c.y>>C.r>>p.x>>p.y;
                TangentLineThroughPoint(C,p);
            }
            else if(input=="CircleThroughAPointAndTangentToALineWithRadius")
            {
                Point d1,d2;
                Point p;
                double r;
                cin>>p.x>>p.y>>d1.x>>d1.y>>d2.x>>d2.y>>r;
                CircleThroughAPointAndTangentToALineWithRadius(p,d1,d2,r);
            }
            else if(input=="CircleTangentToTwoLinesWithRadius")
            {
                Point p1,p2,p3,p4;
                double r;
                cin>>p1.x>>p1.y>>p2.x>>p2.y>>p3.x>>p3.y>>p4.x>>p4.y>>r;
                CircleTangentToTwoLinesWithRadius(Line(p1,(p2-p1)),Line(p3,(p4-p3)),r);
            }
            else //if(input=="CircleTangentToTwoDisjointCirclesWithRadius")
            {
                Circle C1,C2;
                double r;
                cin>>C1.c.x>>C1.c.y>>C1.r>>C2.c.x>>C2.c.y>>C2.r>>r;
                CircleTangentToTwoDisjointCirclesWithRadius(C1,C2,r);
            }
        }
    }
  • 相关阅读:
    NTFS FAT FAT32
    天才经常浏览的15个网站
    手机软件测试总结
    常见文件格式总结
    Tcp三次握手
    Http请求响应机制
    C/S测试
    软件异常测试
    跟我一起学Oracle 11g【8】SQL 基础学习2[连接查询]
    跟我一起学Oracle 11g【7】SQL 基础学习
  • 原文地址:https://www.cnblogs.com/dilthey/p/7758012.html
Copyright © 2011-2022 走看看