zoukankan      html  css  js  c++  java
  • 【4-1】Tensorboard网络结构

    一、代码

    在之前的基础之上,多加了tf.name_scope()函数,相当于给它起名字了,就可以在Tensorboard中可视化出来。

     1 import tensorflow as tf
     2 from tensorflow.examples.tutorials.mnist import input_data
     3 
     4 #载入数据集
     5 mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
     6 
     7 #每个批次的大小
     8 batch_size = 100
     9 #计算一共有多少个批次
    10 n_batch = mnist.train.num_examples // batch_size
    11 
    12 #命名空间
    13 with tf.name_scope('input'):
    14     #定义两个placeholder
    15     x = tf.placeholder(tf.float32,[None,784],name='x-input')
    16     y = tf.placeholder(tf.float32,[None,10],name='y-input')
    17 
    18     
    19 with tf.name_scope('layer'):
    20     #创建一个简单的神经网络
    21     with tf.name_scope('wights'):
    22         W = tf.Variable(tf.zeros([784,10]),name='W')
    23     with tf.name_scope('biases'):    
    24         b = tf.Variable(tf.zeros([10]),name='b')
    25     with tf.name_scope('wx_plus_b'):
    26         wx_plus_b = tf.matmul(x,W) + b
    27     with tf.name_scope('softmax'):
    28         prediction = tf.nn.softmax(wx_plus_b)
    29 
    30 #二次代价函数
    31 # loss = tf.reduce_mean(tf.square(y-prediction))
    32 with tf.name_scope('loss'):
    33     loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
    34 with tf.name_scope('train'):
    35     #使用梯度下降法
    36     train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    37 
    38 #初始化变量
    39 init = tf.global_variables_initializer()
    40 
    41 with tf.name_scope('accuracy'):
    42     with tf.name_scope('correct_prediction'):
    43         #结果存放在一个布尔型列表中
    44         correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    45     with tf.name_scope('accuracy'):
    46         #求准确率
    47         accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    48 
    49 with tf.Session() as sess:
    50     sess.run(init)
    51     writer = tf.summary.FileWriter('logs/',sess.graph)
    52     for epoch in range(1):
    53         for batch in range(n_batch):
    54             batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
    55             sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
    56         
    57         acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
    58         print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))

    然后会在当前路径下,生成logs文件夹和里面的文件,在命令行输入命令:tensorboard --logdir=所在路径

    在谷歌浏览器上打开链接就能看到结果了。

    参考:https://www.cnblogs.com/fydeblog/p/7429344.html

  • 相关阅读:
    HttpModule,HttpHandler,HttpHandlerFactory
    IHttpModule实现URL重写
    HttpModule与HttpHandler详解
    IHttpModule接口
    VS中新建网站和新建项目web应用程序的区别?(实际应用总结一点)
    slf4j简介
    SQL条件表达式
    Windows命令查看文件MD5
    Final对象
    Seasar2框架:AOP
  • 原文地址:https://www.cnblogs.com/direwolf22/p/10975713.html
Copyright © 2011-2022 走看看