zoukankan      html  css  js  c++  java
  • 【线段树合并】联通分量计数

    给定一棵n个节点的树,从1到n标号。选择编号连续的若干个点,你需要选择一些边使得这些点通过选择的边联通,目标是使得选择的边数最少。

    现需要计算对于n*(n+1)/2种选择的情况,最小选择边数的总和为多少。

    Input
    第一行一个数n(1<=n<=100000)
    接下来n-1行,每行两个数x,y描述一条边(1<=x,y<=n)
    Output
    一个数,表示答案
    Input示例
    3
    3 1
    3 2
    Output示例
    5

    注:若有n棵含单个元素的树,经过n-1次合并,合并成一棵树,总代价为O(nlogn)或O(nlogU)
    定义线段树a的势能f(a)为 线段树a的总节点数
    合并两棵值域相同的线段树的时间复杂度为O(两棵线段树重合节点的个数), 即势能的减少数量。
    单叶节点线段树的节点数为logU,即f = logU
    故合并线段树的时间复杂度为 O(nlogU)

      1 #include <bits/stdc++.h>
      2 
      3 #define ll long long
      4 #define ull unsigned long long
      5 #define st first
      6 #define nd second
      7 #define pii pair<int, int>
      8 #define pil pair<int, ll>
      9 #define pli pair<ll, int>
     10 #define pll pair<ll, ll>
     11 #define tiii tuple<int, int, int>
     12 #define pw(x) ((1LL)<<(x))
     13 #define lson l, m, rt<<1
     14 #define rson m+1, r, rt<<1|1
     15 #define FIN freopen("a.in","r",stdin);
     16 #define FOUT freopen("a.out","w",stdout);
     17 using namespace std;
     18 /***********/
     19 template <class T>
     20 bool scan (T &ret) {
     21     char c;
     22     int sgn;
     23     if (c = getchar(), c == EOF) return 0; //EOF
     24     while (c != '-' && (c < '0' || c > '9') ) c = getchar();
     25     sgn = (c == '-') ? -1 : 1;
     26     ret = (c == '-') ? 0 : (c - '0');
     27     while (c = getchar(), c >= '0' && c <= '9') ret = ret * 10 + (c - '0');
     28     ret *= sgn;
     29     return 1;
     30 }
     31 template<typename N,typename PN>inline N flo(N a,PN b){return a>=0?a/b:-((-a-1)/b)-1;}
     32 template<typename N,typename PN>inline N cei(N a,PN b){return a>0?(a-1)/b+1:-(-a/b);}
     33 template<typename T>
     34 inline int sgn(T a) {return a>0?1:(a<0?-1:0);}
     35 template <class T1, class T2>
     36 bool gmax(T1 &a, const T2 &b) { return a < b? a = b, 1:0;}
     37 template <class T1, class T2>
     38 bool gmin(T1 &a, const T2 &b) { return a > b? a = b, 1:0;}
     39 template <class T> inline T lowbit(T x) {return x&(-x);}
     40 
     41 template<class T1, class T2>
     42 ostream& operator <<(ostream &out, pair<T1, T2> p) {
     43     return out << "(" << p.st << ", " << p.nd << ")";
     44 }
     45 template<class A, class B, class C>
     46 ostream& operator <<(ostream &out, tuple<A, B, C> t) {
     47     return out << "(" << get<0>(t) << ", " << get<1>(t) << ", " << get<2>(t) << ")";
     48 }
     49 template<class T>
     50 ostream& operator <<(ostream &out, vector<T> vec) {
     51     out << "("; for(auto &x: vec) out << x << ", "; return out << ")";
     52 }
     53 void testTle(int &a){
     54     while(1) a = a*(ll)a%1000000007;
     55 }
     56 const int inf = 0x3f3f3f3f;
     57 const ll INF = 1e17;
     58 const ll mod = 1000000007;
     59 const double eps = 1e-6;
     60 const int N = 3e6+5;
     61 /***********/
     62 
     63 
     64 struct Node{
     65     int l, r;//子树指针
     66     ll ans;
     67     int lsize, rsize;//左侧连续长度,右侧连续长度
     68     bool lnum, rnum;//最左值
     69 };
     70 Node T[N];
     71 
     72 void debug(Node &A, int l, int r){
     73     puts("******");
     74     printf("l: %d, r: %d
    ", l, r);
     75     printf("ans: %lld
    ", A.ans);
     76     printf("lsize:%d, rsize:%d
    ", A.lsize, A.rsize);
     77     printf("lnum:%d rnum:%d
    ", A.lnum*1, A.rnum*1);
     78     puts("******");
     79     if(A.l) debug(T[A.l], l, (l+r)/2);
     80     if(A.r) debug(T[A.r], (l+r)/2+1, r);
     81 }
     82 
     83 int cnt;
     84 int n;
     85 void pushup(int rt, int l, int r){//更新rt节点信息
     86     int lp = T[rt].l, rp = T[rt].r;
     87     int m = (l+r) >> 1;
     88     //更新
     89     T[rt].ans = (lp? T[lp].ans: 0) + (rp? T[rp].ans: 0) + (m-l+1LL)*(r-m);///////
     90     if( (lp? T[lp].rnum: 0) == (rp? T[rp].lnum: 0) ){
     91         T[rt].ans -= (lp? T[lp].rsize: m-l+1LL)*(rp? T[rp].lsize: r-m);
     92         if(lp == 0||T[lp].lsize == m-l+1) T[rt].lsize = m-l+1+(rp? T[rp].lsize: r-m);
     93         else T[rt].lsize = T[lp].lsize;
     94         if(rp == 0||T[rp].rsize == r-m) T[rt].rsize = r-m+(lp? T[lp].rsize: m-l+1);
     95         else T[rt].rsize = T[rp].rsize;
     96     }
     97     else T[rt].lsize = lp? T[lp].lsize: m-l+1, T[rt].rsize = rp? T[rp].rsize: r-m;
     98     T[rt].lnum = lp? T[lp].lnum: 0, T[rt].rnum = rp? T[rp].rnum: 0;
     99 }
    100 
    101 int update(int x, int l, int r, int &rt){//插入一个节点
    102     rt = ++cnt;
    103     if(cnt == N){
    104         testTle(x);
    105     }
    106     T[rt].l = T[rt].r = 0;
    107     T[rt].ans = (x-(ll)l)*(r-x)+r-l;//x
    108     T[rt].lsize = x == l? 1: x-l, T[rt].rsize = x == r? 1: r-x;
    109     T[rt].lnum = x == l; T[rt].rnum = x == r;
    110     if(l == r) return cnt;
    111 
    112     int m = (l+r) >> 1;
    113     if(x <= m) update(x, l, m, T[rt].l);
    114     else update(x, m+1, r, T[rt].r);
    115     return cnt;
    116 }
    117 
    118 void merg(int &x, int y, int l, int r){
    119     if(!x || !y){
    120         if(x == 0) x = y;
    121         return ;
    122     }
    123     if(l == r) {testTle(x) ; return ;} //T[x].v += T[y].v; 
    124     int m = (l+r) >> 1;
    125     merg(T[x].l, T[y].l, l, m);
    126     merg(T[x].r, T[y].r, m+1, r);
    127     pushup(x, l, r);
    128 }
    129 
    130 vector<int> ve[100005];
    131 int root[100005];
    132 ll ans = 0;
    133 void dfs(int f, int x){
    134     //add
    135     update(x, 1, n, root[x]);
    136     for(int y: ve[x]) if(y != f){
    137         dfs(x, y);
    138         merg(root[x], root[y], 1, n);
    139     }
    140     if(f) ans += T[ root[x] ].ans;
    141 }
    142 
    143 int main() {
    144     //FIN //FOUT
    145     scanf("%d", &n);
    146     for(int u, v, i = 1; i < n; i++){
    147         scanf("%d%d", &u, &v);
    148         ve[u].push_back(v);
    149         ve[v].push_back(u);
    150     }
    151     dfs(0, 1);
    152     printf("%lld
    ", ans);
    153     return 0;
    154 }
    View Code

     启发式合并复杂度分析

  • 相关阅读:
    【LeetCode每日一题】2020.6.28 209. 长度最小的子数组
    【《你不知道的JS(中卷①)》】三、原生函数
    【《你不知道的JS(中卷①)》】二、值
    【《你不知道的JS(中卷①)》】一、类型
    【LeetCode每日一题】2020.6.26 面试题 02.01. 移除重复节点
    【LeetCode周赛】第194场周赛
    【LeetCode每日一题】2020.6.25 139. 单词拆分
    ios网络编程(HTTP socket)
    objective c 代码块blocks完整总结二
    objective c 代码块blocks完整总结一
  • 原文地址:https://www.cnblogs.com/dirge/p/7257733.html
Copyright © 2011-2022 走看看