巨大缝合题(逃
先考虑(k)小操作啊,(SAM)除去(link)后,这个东西就类似于一颗(tire)。
就在(tire)上跑就好了。
不过要预处理出每个等价类的出现次数。
这题充分揭示了后缀(tire)和(SAM)的关系,(SAM)实际上为路径压缩后的后缀(tire)树的聚合体。
[TJOI2015]弦论
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
#define N 500005
ll link[N << 1],ch[N << 1][30],f[N << 1],g[N << 1],len[N << 1];
char a[N];
ll nod = 1,lst = 1;
inline void insert(int c){
int p = lst,q = ++nod;lst = q;
len[q] = len[p] + 1;
while(!ch[p][c] && p != 0){//向上找
ch[p][c] = q;
p = link[p];
}
if(p == 0)
link[q] = 1;
else{
int x = ch[p][c];
if(len[p] + 1 == len[x]){
link[q] = x;
}else{
int y = ++ nod ;//复制一个新节点
link[y] = link[x];
link[x] = link[q] = y;
len[y] = len[p] + 1;
std::memcpy(ch[y],ch[x],sizeof(ch[x]));
while(p != 0 && ch[p][c] == x){
ch[p][c] = y;
p = link[p];
}
}
}
}
ll cnt,head[N << 1];
struct P{int to,next;}e[N << 1];
inline void add(int x,int y){
e[++cnt].to = y;
e[cnt].next = head[x];
head[x] = cnt;
}
inline void dfs(int u){
if(head[u] == 0){
f[u] = 1;
return;
}
for(int i = head[u];i;i = e[i].next){
dfs(e[i].to);
f[u] += f[e[i].to];
}
}
ll t,k;
bool vis[N << 1];
inline void dfs2(int u){
if(vis[u])
return ;
vis[u] = 1;
for(int i = 0;i <= 26;++i){
if(!ch[u][i])
continue;
dfs2(ch[u][i]);
g[u] += g[ch[u][i]];
}
}
inline void Print(int u,int k){
// std::cout<<u<<" "<<k<<" "<<f[u]<<std::endl;
if(k <= f[u])return ;else k -= f[u];
for(int i = 0;i <= 26;++i){
if(!ch[u][i])
continue;
if(g[ch[u][i]] >= k){
std::cout<<(char)('a' + i);
Print(ch[u][i],k);
return;
}
else
k -= g[ch[u][i]];
}
}
int main(){
freopen("q.in","r",stdin);
freopen("q.out","w",stdout);
scanf("%s",a + 1);
ll l = std::strlen(a + 1);
scanf("%lld%lld",&t,&k);
for(int i = 1;i <= l;++i)
insert(a[i] - 'a');
for(int i = 1;i <= nod;++i)
add(link[i],i);
dfs(1);
for(int i = 1;i <= nod;++i)
g[i] = (t) ? f[i] : (f[i] = 1);
f[1] = g[1] = 0;
dfs2(1);
for(int i = 1;i <= nod;++i)
std::cout<<f[i]<<" "<<g[i]<<std::endl;
if(k > g[1]){
puts("-1");
return 0;
}
Print(1,k);
}