zoukankan      html  css  js  c++  java
  • [ARC 122]

    最近状态差到爆炸.
    (AT)连掉两把分,啥时候能上黄啊。

    (A)
    考虑直接动归。
    (O(n^2))的动归后缀和优化成(O(n))

    A
    #include<iostream>
    #include<cstdio>
    #define ll long long
    #define N 100005
    #define mod 1000000007
    
    ll a[N],f[N],g[N],sf[N],sg[N];
    ll n,ans,sum;
    
    int main(){
    	scanf("%lld",&n);
    	for(int i = 1;i <= n;++i)
    	scanf("%lld",&a[i]),sum = (sum + a[i]) % mod;
    	//f:i为-时从i到n有多少种合法方案,g:这些合法方案的权数。
    	f[n] = 1,g[n] = (-2 * a[n] + mod) % mod;
    	f[n + 1] = 1;
    	sf[n] = 2,sf[n + 1] = 1,sg[n] = g[n];
    	for(int i = n - 1;i >= 2;--i){
    		f[i] = sf[i + 2];
    		g[i] = (f[i] * (-2 * a[i] + mod) % mod + sg[i + 2]) % mod;
    		sf[i] = (sf[i + 1] + f[i]) % mod;
    		sg[i] = (sg[i + 1] + g[i]) % mod; 
    	}
    //	for(int i = n;i >= 2;--i)
    //	std::cout<<f[i]<<" "<<g[i]<<std::endl;
    	for(int i = n;i >= 2;--i)
    	ans = (ans + sum * f[i] % mod + g[i]) % mod;
    	ans = (ans + sum) % mod;
    	std::cout<<ans<<std::endl;
    }
    

    (B)
    听说B是一个结论题,正解来看呢,应该是把(n)个可取值都试一遍,但是我写的模拟退火。

    B
    #include<iostream>
    #include<cstdio>
    #include<ctime>
    #include<cstdlib>
    #include<cmath>
    #define ll long long
    #define N 100005
    
    struct P{int x,y,w;}p[N];
    
    ll n;
    
    double ansx,ansy;
    
    inline  double find(double x){
    	double ans = 0;
    	for(int i = 1;i <= n;++i)
    	ans += (p[i].x + x - std::min((double)p[i].x,(double)(2 * x))) / (1.0 * n);
    	return ans;
    }
    
    int main(){
    //	freopen("q.in","r",stdin);
    //	freopen("q.out","w",stdout);
    	srand(273352);
    	scanf("%lld",&n);
    	for(int i = 1;i <= n;++i){
    		scanf("%d",&p[i].x);
    		ansx += p[i].x;	}
    	ansx = (ansx) / (1.0 * n);
    	ansy = 0x7f7f7f7f;
    	double eps = 1e-15;
    	double T = 200;//初始温度 
    	while(T > eps && ((double)(clock())/CLOCKS_PER_SEC)<1.9){//终止态 
    //		std::cout<<T<<" "<<(rand() * 2 - RAND_MAX) * T<<std::endl;
    		double nowx = ansx + ((rand() * 2 - RAND_MAX + 1) * T);//在值域[ansx - t,ansx + t];中挑选一个随机数
    		long double z = find(nowx) - find(ansx);
    		if(z < 0)
    		ansx = nowx,ansy = std::min(ansy,find(nowx));
    		else
    		if(exp(-z / T) * RAND_MAX > rand())//随机接受 
    		ansx = nowx;
    		T *= 0.997;//降温速率 
    //		std::cout<<ansx<<std::endl;
    	}
    	printf("%.12lf
    ",ansy);
    }
    
    

    (C)
    考虑每一个数在(fib)数系下都有唯一分解。
    做完了。

    C
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #define ll long long
    
    ll f[200],to[200],ti[200];
    ll ans[200];
    
    ll n;
    ll k;
    
    //0 1
    //1 1
    //1 2
    //1 3
    //4 3
    //4 7
    
    int main(){
    	scanf("%lld",&n);
    	ll q = n;
    	ll len = 1;
    	f[0] = 1,f[1] = 1;
    	while(f[len] <= n + 1){
    		f[++len] = f[len - 1] + f[len - 2];
    	}
    	for(int i = len;i >= 1;--i)
    	if(n >= f[i])
    	to[++to[0]] = i,n -= f[i];
    	std::sort(to + 1,to + to[0] + 1);
    	for(int i = 1;i <= to[0];++i)
    	ti[i] = to[to[0]] - to[i];
    	std::sort(ti + 1,ti + to[0] + 1);
    	ll s = to[to[0]];
    	ll x = 0,y = 0;
    	ll now = 1;
    	for(int i = 0;i <= s;++i){
    		if(i == ti[now]){
    			if(i & 1)
    			ans[++k] = 1,x += 1;
    			else
    			ans[++k] = 2,y += 1;
    			++now;
    		}
    		if(i & 1)
    		ans[++k] = 4,y += x;
    		else
    		ans[++k] = 3,x += y;
    	}
    	std::cout<<k<<std::endl;
    	if(x == q){
    		for(int i = 1;i <= k;++i)
    		std::cout<<ans[i]<<std::endl;
    	}
    	else{
    		for(int i = 1;i <= k;++i){
    			if(ans[i] <= 2)
    			std::cout<<3 - ans[i]<<std::endl;
    			else
    			std::cout<<7 - ans[i]<<std::endl;
    		}
    	}
    } 
    
    

    (D)
    考虑如果后手已经想好的每个数对,那么其实游戏进程没有差别。
    所以这是一个假博弈。
    我们考虑对每一位进行操作,如果这一位的(0),(1)的数量都是偶数,那么递归进子树操作。
    否则则把左子树和右子树左右匹配,用(01tire)找出最小的匹配,因为再往下递归的所有对都小于这个匹配。

    D
    #include<iostream>
    #include<cstdio>
    #define ll long long
    
    ll to[12000005][2];
    ll cnt[12000005];
    
    ll n;
    
    ll dfncnt;
    
    inline void insert(ll x){
    	ll u = 0;
    	cnt[u] ++ ;
    	for(int i = 29;i >= 0;--i){
    		int t = (x >> i) & 1;
    		if(!to[u][t])
    		to[u][t] = ++ dfncnt;
    		u = to[u][t];
    		cnt[u] ++ ;
    	}
    } 
     
    ll ans = 0,tmp;
    
    #define l(u) to[u][0]
    #define r(u) to[u][1]
    
    inline void find(ll p1,ll p2,ll now,ll dep){
    //	std::cout<<p1<<" "<<p2<<" "<<now<<" "<<dep<<std::endl;
    	if(dep == 0){
    		tmp = std::min(now,tmp);
    		return;
    	}
    	bool q = 0;
    	for(int i = 0;i <= 1;++i)
    	if(to[p1][i] && to[p2][i]){
    		q = 1;
    		find(to[p1][i],to[p2][i],now,dep - 1);
    	}
    	if(q)
    	return;
    	for(int i = 0;i <= 1;++i)
    	if(to[p1][i] && to[p2][!i]){
    		find(to[p1][i],to[p2][!i],now | (1 << (dep - 1)),dep - 1);
    		q = true;
    	}
    }
    
    inline void dfs(int u,int dep){
    //	std::cout<<u<<" "<<dep<<std::endl;
    	if(!to[u][1] && !to[u][0])
    	return;
    	if(cnt[l(u)] % 2 && cnt[r(u)]){
    		tmp = (1 << 30);
    		find(l(u),r(u),(1 << (dep - 1)),dep - 1);
    		ans = std::max(ans,tmp);
    		return ;
    	}
    	if(l(u))
    	dfs(l(u),dep - 1);
    	if(r(u))
    	dfs(r(u),dep - 1);
    }
    
    int main(){
    	scanf("%lld",&n);
    	for(int i = 1;i <= 2 * n;++i){
    		ll x;
    		scanf("%lld",&x);
    		insert(x);
    	}
    	dfs(0,30);
    	std::cout<<ans<<std::endl;
    }
    

    (E)
    由于(lcm(x,y) = frac{x * y}{gcd(x,y)})
    考虑最后一个数,那么有(gcd(lcm(a_j),a_i) < a_i)
    (lcm(gcd(a_i,a_j)) < a_i)这里是由于精度所以不能选择前一种(
    然后依次从后向前选择就好了。

    E
    #include<iostream>
    #include<cstdio>
    #define ll long long
    #define N 305
    
    ll ans[N],a[N];
    bool vis[N];
    
    ll n;
    
    inline ll g(ll a,ll b){return (b == 0) ? a : g(b,a % b);}
    
    int main(){
    	scanf("%lld",&n);
    	for(int i = 1;i <= n;++i)
    	scanf("%lld",&a[i]);
    	for(int i = n;i >= 1;--i){
    		bool q;
    		for(int j = 1;j <= n;++j){
    			ll lcm = 1;
    			ll gcd = 1;
    			if(!vis[j]){
    				q = 1;
    				for(int k = 1;k <= n;++k){
    					if(!vis[k] && k != j){
    						gcd = g(a[k],a[j]);
    						lcm = lcm / g(gcd,lcm) * gcd;
    						if(lcm >= a[j]){
    							q = 0;
    							break;
    						}
    					}
    				}
    				if(q){
    					ans[i] = a[j];
    					vis[j] = 1;
    					break;
    				}
    			}
    		}
    		if(!q){
    			puts("No");
    			return 0;
    		}	
    	}
    	puts("Yes");
    	for(int i = 1;i <= n;++i)
    	std::cout<<ans[i]<<" ";
    }
    
  • 相关阅读:
    Pycharm 新建工程后修改解析器为python3 的方法
    HttpRunner2.X开源接口测试框架学习(七):跳过用例以及重复执行用例
    python习题(一)
    HttpRunner2.X开源接口测试框架学习(九):用例分层机制实战应用
    C# 中的常用正则表达式总结
    缩小SQL Server数据库日志文件
    DataBinder.Eval用法范例
    关于GridView中自定义分页、单选、多选、排序、自增列的简单应用
    退出一个页面时自动清空session变量
    C#代码与javaScript函数的相互调用
  • 原文地址:https://www.cnblogs.com/dixiao/p/14883476.html
Copyright © 2011-2022 走看看