• 学习Python必须要知道的4个内置函数


    1、map

    map是python内置的高阶函数,它接收一个函数和一个列表,函数依次作用在列表的每个元素上,返回一个可迭代map对象。

    class map(object):
        """
        map(func, *iterables) --> map object
        
        Make an iterator that computes the function using arguments from
        each of the iterables.  Stops when the shortest iterable is exhausted.
        """
        def __getattribute__(self, *args, **kwargs): # real signature unknown
            """ Return getattr(self, name). """
            pass
    
        def __init__(self, func, *iterables): # real signature unknown; restored from __doc__
            pass
    
        def __iter__(self, *args, **kwargs): # real signature unknown
            """ Implement iter(self). """
            pass
    
        @staticmethod # known case of __new__
        def __new__(*args, **kwargs): # real signature unknown
            """ Create and return a new object.  See help(type) for accurate signature. """
            pass
    
        def __next__(self, *args, **kwargs): # real signature unknown
            """ Implement next(self). """
            pass
    
        def __reduce__(self, *args, **kwargs): # real signature unknown
            """ Return state information for pickling. """
            pass
    

    用法举例 :  将列表li中的数值都加1,  li = [1,2,3,4,5]

    li = [1,2,3,4,5]
    
    def add1(x):
        return x+1
    
    res = map(add1, li)
    print(res)
    for i in res:
        print(i)
    
    结果:
    <map object at 0x00000042B4E6D4E0>
    2
    3
    4
    5
    6
    

    2、lambda表达式

    是一个表达式,可以创建匿名函数,冒号前是参数,冒号后只能有一个表达式(传入参数,根据参数表达出一个值)

    nl = lambda x,y:x*y  # 给出x,y参数,计算出x和y的相乘
    print(nl(3,5))
    print('-----')
    #和map的结合
    li = [1,2,3,4,5]
    for i in map(lambda x:x*2, li):
        print(i)
    
    
    结果:
    15
    -----
    2
    4
    6
    8
    10
    

    3、Pool

    1、多进程,是multiprocessing的核心,它与threading很相似,但对多核CPU的利用率会比threading好的多

    2、可以允许放在Python程序内部编写的函数中,该Process对象与Thread对象的用法相同,拥有is_alive()join([timeout])run()start()terminate()等方法

    3、multiprocessing包中也有Lock/Event/Semaphore/Condition类,用来同步进程

    传统的执行多个函数的例子

    import time
    
    def do_proc(n):  # 返回平方值
        time.sleep(1)
        return n*n
    
    if __name__ == '__main__':
        start = time.time()
        for p in range(8):
            print(do_proc(p))  # 循环执行8个函数
        print("execute time is " ,time.time()-start)
    
    结果:
    0
    1
    4
    9
    16
    25
    36
    49
    execute time is  8.002938985824585
    

    使用多进程执行函数

    '''
    遇到问题没人解答?小编创建了一个Python学习交流群:531509025
    寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
    '''
    import time
    from multiprocessing import Pool
    
    def do_proc(n):  # 返回平方值
        time.sleep(n)
        print(n)
        return n*n
    
    if __name__ == '__main__':
        pool = Pool(3)  # 池中最多只能放三个任务
        start = time.time()
        p1 = pool.map(do_proc, range(8))  # 跟python的map用法相似(map连续生成8个任务的同时依次传给pool,pool依次调起池中的任务,执行完的任务从池中剔除)
        pool.close()  # 关闭进程池
        pool.join()  # 等待所有进程(8个进程)的结束
        print(p1)
        print("execute time is ", time.time() - start)
    
    结果:
    0
    1
    2
    3
    4
    5
    6
    7
    [0, 1, 4, 9, 16, 25, 36, 49]
    execute time is  3.3244528770446777
    

    查看任务管理器:
    在这里插入图片描述
    4、random

    import random
    
    print(random.random())  # 生成一个0-1随机小数
    print(random.uniform(10,20))  # 指定范围随机选择一个小数
    print(random.randint(10,20))  # 指定范围内随机选择一个整数
    print(random.randrange(0,90,2))  # 指定范围内选择一个随机偶数
    print(random.choice('abcdefg'))  # 指定字符串中随机选择一个字符
    print(random.sample('abcdefgh'),2)  # 指定字符串内随机选择2个字符
    print(random.choice(['app','pear','ora']))  # 指定列表内随机选择一个值
    itmes = [1,2,3,4,5,6,7,8]  # 将列表表洗牌
    random.shuffle(itmes)
    print(itmes)
    
  • 相关阅读:
    VIM配置
    VSCode配置Import@路径
    Sar
    VIM-Fold折叠
    sysctl
    java8 到 java14新增的特性
    Electron整合VUE
    使用Markfile开发GO程序
    cron 表达式
    java spi
  • 原文地址:https://www.cnblogs.com/djdjdj123/p/15013102.html
走看看 - 开发者的网上家园