zoukankan      html  css  js  c++  java
  • Tensorflow替换静态图中的OP

      import tensorflow as tf

      import collections

      from tensorflow.core.framework import tensor_shape_pb2

      # 读取模型

      graph_def = tf.GraphDef()

      with tf.gfile.FastGFile('./pb/model.pb', 'rb') as f:

      graph_def.ParseFromString(f.read())

      # 统计图中的node,保存为map.其中 key : value = op.name : op

      input_node_map = {}

      for node in graph_def.node:

      if node.name not in input_node_map.keys():

      input_node_map[node.name] = node

      else:

      raise ValueError("Duplicate node names detected for ", node.name)

      # 统计每一个op被使用的次数

      node_reference_count = collections.defaultdict(int)

      output_node_names = ['xnet/Softmax']

      for node in graph_def.node:

      for input_name in node.input:

      stripped_name = input_name

      node_reference_count[stripped_name] += 1

      for output_name in output_node_names:

      node_reference_count[output_name] += 1

      # 删除old_op

      old_op = input_node_map['xnet/Layer_Conv_1/Conv2D']

      node_reference_count['xnet/Layer_Conv_1/Conv2D'] -= 1

      # 创建新的op

      new_node = tf.NodeDef()

      new_node.op = 'Conv2D'

      new_node.name = 'new_Conv_1'

      for input_name in old_op.input:

      new_node.input.extend([input_name])

      new_node.attr["T"].CopyFrom(tf.AttrValue(type=tf.float32.as_datatype_enum)) # (old_op.attr["T"])

      new_node.attr["use_cudnn_on_gpu"].CopyFrom(tf.AttrValue(b=1)) # (old_op.attr["use_cudnn_on_gpu"])

      stride_list = [1, 2, 2, 1]

      new_node.attr["strides"].CopyFrom(tf.AttrValue(list=tf.AttrValue.ListValue(i=stride_list))) # (old_op.attr["strides"])

      new_node.attr["padding"].CopyFrom(tf.AttrValue(s=b'VALID')) # (old_op.attr["padding"])

      # 创建const类型的op,仅作为测试,本实验中不添加入graph

      new_const = tf.NodeDef()

      new_const.op = 'Const'

      new_const.name = 'new_Const'

      new_const.attr['dtype'].CopyFrom(tf.AttrValue(type=tf.float32.as_datatype_enum))

      new_const.attr['value'].CopyFrom(

      tf.AttrValue(tensor=tf.make_tensor_proto([4, 5, 0, 0, 8, 0, 7, 0], tf.float32, [4, 2])))

      new_const.attr['_output_shapes'].CopyFrom(

      tf.AttrValue(list=tf.AttrValue.ListValue(shape=[tensor_shape_pb2.TensorShapeProto(

      dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=4), tensor_shape_pb2.TensorShapeProto.Dim(size=2)])])))

      # 将new_node作为输入赋值给图中节点

      for node in graph_def.node:

      if old_op.name in node.input:

      for i, name in enumerate(node.input):

      if name == old_op.name:

      node.input[i] = new_node.name

      print('success_1')

      # 定义一个新图

      graph_def_new = tf.GraphDef()

      for node in graph_def.node:

      if node_reference_count[node.name] < 1:

      continue

      new = tf.NodeDef()

      new.CopyFrom(node)

      graph_def_new.node.extend([new])

      graph_def_new.node.extend([new_node])

      # graph_def_new.node.extend([new_const])

      # 将新图注入到默认的Graph中

      tf.import_graph_def(graph_def_new, name='') # Imports `graph_def` into the current default `Graph`

      # 测试案例

      with tf.Session() as sess:

      tf.train.write_graph(sess.graph_def, logdir='./pb', name='graph_def_new.pb')

      OP的信息:

      name: "xnet/Layer_FC_32/xw_plus_b"

      op: "BiasAdd"

      input: "xnet/Layer_FC_32/xw_plus_b/MatMul"

      input: "xnet/Layer_FC_32/biases/read"

      attr

      {

      key: "T"

      value {type: DT_FLOAT}

      }

      attr

      {

      key: "data_format"

      value {s: "NHWC"}

      }

      在tensorflow中,OP主要包括以下信息:name, op , input, attr

      name--类型string。 在模型定义的时候由工程师定义,如果工程师没有定义的话会自动的利用op作为其值

      op--类型string。表示这是一个什么op,比如加减乘除,当在运行的时候,编译器会更具op调用相应的算子来做计算

      input--类型list.。列表中包含了该节点输入,是有序的,不可以被assign

      attr--类型map。map中的key和value一般是指该OP的配置信息

      OP的操作:

      1、op信息获取

      1. 通过Graph获取op

      op = tf.get_default_graph().get_Operations()

      print(op[0])

      print(op[0].name)

      # 如果想获得属性或者input信息需要如下写法

      print(op[0].node_def.attr)

      2.通过Graph_def获取op

      op = graph_def.node

      print(op[0].name)

      print(op[0].input)

      2、op的创建无锡好的男科医院 http://www.zzchnk.com/

      在构建新的op的时候需要对op的属性比较清楚,对于没有default的属性一定要做好初始化

      1.根据已有的op创建新的op

      new_node = tf.NodeDef() # 构建一个op对象,所有属性都为空

      new_node.op = 'Conv2D'

      new_node.name = 'new_Conv_1'

      for input_name in old_op.input: # 原始op的input导入进来

      new_node.input.extend([input_name])

      new_node.attr["T"].CopyFrom(old_op.attr["T"])

      new_node.attr["use_cudnn_on_gpu"].CopyFrom(old_op.attr["use_cudnn_on_gpu"])

      new_node.attr["strides"].CopyFrom(old_op.attr["strides"])

      new_node.attr["padding"].CopyFrom(old_op.attr["padding"])

      2.创建一个自定义的op

      new_op = tf.NodeDef()

      new_op.op = "Const"

      new_op.name = conv_op.name

      new_op.attr["dtype"].CopyFrom(tf.AttrValue( type=tf.int32.as_datatype_enum))

      new_op.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto([0, 0, 0, 0, 0, 0, 0, 0], tf.int32, [4, 2])))

      OP中attr为map,每一个map中key为字符串,value为的类型由下面9种,每种对应的原型如下表所示:

      repeated bytes s = 2; // "list(string)"

      repeated int64 i = 3 [packed = true]; // "list(int)"

      repeated float f = 4 [packed = true]; // "list(float)"

      repeated bool b = 5 [packed = true]; // "list(bool)"

      repeated DataType type = 6 [packed = true]; // "list(type)"

      repeated TensorShapeProto shape = 7; // "list(shape)"

      repeated TensorProto tensor = 8; // "list(tensor)"

      repeated NameAttrList func = 9; // "list(attr)"

      list 也为value的一种类型

      每一种类型初始化方式:

      CopyFrom(tf.AttrValue( s=b'hello,world'))

      CopyFrom(tf.AttrValue( i=88 ))

      CopyFrom(tf.AttrValue( f=88.0 ))

      CopyFrom(tf.AttrValue( b=1/0 ))

      new_op.attr["dtype"].CopyFrom(tf.AttrValue( type=tf.int32.as_datatype_enum))

      from tensorflow.core.framework import tensor_shape_pb2

      tensor_shape_pb2.TensorShapeProto(dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=-1 if d.value is None else d.value) for d in dims])

      new_op.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto([0, 0, 0, 0, 0, 0, 0, 0], tf.int32, [4, 2])))

      func目前没有没有遇到过

      stride_list = [1, 2, 2, 1]

      new_node.attr["strides"].CopyFrom(tf.AttrValue(list=tf.AttrValue.ListValue(i=stride_list)))

      import tensorflow as tf

      import collections

      from tensorflow.core.framework import tensor_shape_pb2

      # 读取模型

      graph_def = tf.GraphDef()

      with tf.gfile.FastGFile('./pb/model.pb', 'rb') as f:

      graph_def.ParseFromString(f.read())

      # 统计图中的node,保存为map.其中 key : value = op.name : op

      input_node_map = {}

      for node in graph_def.node:

      if node.name not in input_node_map.keys():

      input_node_map[node.name] = node

      else:

      raise ValueError("Duplicate node names detected for ", node.name)

      # 统计每一个op被使用的次数

      node_reference_count = collections.defaultdict(int)

      output_node_names = ['xnet/Softmax']

      for node in graph_def.node:

      for input_name in node.input:

      stripped_name = input_name

      node_reference_count[stripped_name] += 1

      for output_name in output_node_names:

      node_reference_count[output_name] += 1

      # 删除old_op

      old_op = input_node_map['xnet/Layer_Conv_1/Conv2D']

      node_reference_count['xnet/Layer_Conv_1/Conv2D'] -= 1

      # 创建新的op

      new_node = tf.NodeDef()

      new_node.op = 'Conv2D'

      new_node.name = 'new_Conv_1'

      for input_name in old_op.input:

      new_node.input.extend([input_name])

      new_node.attr["T"].CopyFrom(tf.AttrValue(type=tf.float32.as_datatype_enum)) # (old_op.attr["T"])

      new_node.attr["use_cudnn_on_gpu"].CopyFrom(tf.AttrValue(b=1)) # (old_op.attr["use_cudnn_on_gpu"])

      stride_list = [1, 2, 2, 1]

      new_node.attr["strides"].CopyFrom(tf.AttrValue(list=tf.AttrValue.ListValue(i=stride_list))) # (old_op.attr["strides"])

      new_node.attr["padding"].CopyFrom(tf.AttrValue(s=b'VALID')) # (old_op.attr["padding"])

      # 创建const类型的op,仅作为测试,本实验中不添加入graph

      new_const = tf.NodeDef()

      new_const.op = 'Const'

      new_const.name = 'new_Const'

      new_const.attr['dtype'].CopyFrom(tf.AttrValue(type=tf.float32.as_datatype_enum))

      new_const.attr['value'].CopyFrom(

      tf.AttrValue(tensor=tf.make_tensor_proto([4, 5, 0, 0, 8, 0, 7, 0], tf.float32, [4, 2])))

      new_const.attr['_output_shapes'].CopyFrom(

      tf.AttrValue(list=tf.AttrValue.ListValue(shape=[tensor_shape_pb2.TensorShapeProto(

      dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=4), tensor_shape_pb2.TensorShapeProto.Dim(size=2)])])))

      # 将new_node作为输入赋值给图中节点

      for node in graph_def.node:

      if old_op.name in node.input:

      for i, name in enumerate(node.input):

      if name == old_op.name:

      node.input[i] = new_node.name

      print('success_1')

      # 定义一个新图

      graph_def_new = tf.GraphDef()

      for node in graph_def.node:

      if node_reference_count[node.name] < 1:

      continue

      new = tf.NodeDef()

      new.CopyFrom(node)

      graph_def_new.node.extend([new])

      graph_def_new.node.extend([new_node])

      # graph_def_new.node.extend([new_const])

      # 将新图注入到默认的Graph中

      tf.import_graph_def(graph_def_new, name='') # Imports `graph_def` into the current default `Graph`

      # 测试案例

      with tf.Session() as sess:

      tf.train.write_graph(sess.graph_def, logdir='./pb', name='graph_def_new.pb')

      OP的信息:

      name: "xnet/Layer_FC_32/xw_plus_b"

      op: "BiasAdd"

      input: "xnet/Layer_FC_32/xw_plus_b/MatMul"

      input: "xnet/Layer_FC_32/biases/read"

      attr

      {

      key: "T"

      value {type: DT_FLOAT}

      }

      attr

      {

      key: "data_format"

      value {s: "NHWC"}

      }

      在tensorflow中,OP主要包括以下信息:name, op , input, attr

      name--类型string。 在模型定义的时候由工程师定义,如果工程师没有定义的话会自动的利用op作为其值

      op--类型string。表示这是一个什么op,比如加减乘除,当在运行的时候,编译器会更具op调用相应的算子来做计算

      input--类型list.。列表中包含了该节点输入,是有序的,不可以被assign

      attr--类型map。map中的key和value一般是指该OP的配置信息

      OP的操作:

      1、op信息获取

      1. 通过Graph获取op

      op = tf.get_default_graph().get_Operations()

      print(op[0])

      print(op[0].name)

      # 如果想获得属性或者input信息需要如下写法

      print(op[0].node_def.attr)

      2.通过Graph_def获取op

      op = graph_def.node

      print(op[0].name)

      print(op[0].input)

      2、op的创建

      在构建新的op的时候需要对op的属性比较清楚,对于没有default的属性一定要做好初始化

      1.根据已有的op创建新的op

      new_node = tf.NodeDef() # 构建一个op对象,所有属性都为空

      new_node.op = 'Conv2D'

      new_node.name = 'new_Conv_1'

      for input_name in old_op.input: # 原始op的input导入进来

      new_node.input.extend([input_name])

      new_node.attr["T"].CopyFrom(old_op.attr["T"])

      new_node.attr["use_cudnn_on_gpu"].CopyFrom(old_op.attr["use_cudnn_on_gpu"])

      new_node.attr["strides"].CopyFrom(old_op.attr["strides"])

      new_node.attr["padding"].CopyFrom(old_op.attr["padding"])

      2.创建一个自定义的op

      new_op = tf.NodeDef()

      new_op.op = "Const"

      new_op.name = conv_op.name

      new_op.attr["dtype"].CopyFrom(tf.AttrValue( type=tf.int32.as_datatype_enum))

      new_op.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto([0, 0, 0, 0, 0, 0, 0, 0], tf.int32, [4, 2])))

      OP中attr为map,每一个map中key为字符串,value为的类型由下面9种,每种对应的原型如下表所示:

      repeated bytes s = 2; // "list(string)"

      repeated int64 i = 3 [packed = true]; // "list(int)"

      repeated float f = 4 [packed = true]; // "list(float)"

      repeated bool b = 5 [packed = true]; // "list(bool)"

      repeated DataType type = 6 [packed = true]; // "list(type)"

      repeated TensorShapeProto shape = 7; // "list(shape)"

      repeated TensorProto tensor = 8; // "list(tensor)"

      repeated NameAttrList func = 9; // "list(attr)"

      list 也为value的一种类型

      每一种类型初始化方式:

      CopyFrom(tf.AttrValue( s=b'hello,world'))

      CopyFrom(tf.AttrValue( i=88 ))

      CopyFrom(tf.AttrValue( f=88.0 ))

      CopyFrom(tf.AttrValue( b=1/0 ))

      new_op.attr["dtype"].CopyFrom(tf.AttrValue( type=tf.int32.as_datatype_enum))

      from tensorflow.core.framework import tensor_shape_pb2

      tensor_shape_pb2.TensorShapeProto(dim=[tensor_shape_pb2.TensorShapeProto.Dim(size=-1 if d.value is None else d.value) for d in dims])

      new_op.attr["value"].CopyFrom(tf.AttrValue(tensor=tf.make_tensor_proto([0, 0, 0, 0, 0, 0, 0, 0], tf.int32, [4, 2])))

      func目前没有没有遇到过

      stride_list = [1, 2, 2, 1]

      new_node.attr["strides"].CopyFrom(tf.AttrValue(list=tf.AttrValue.ListValue(i=stride_list)))

  • 相关阅读:
    C#将JSON字符串对象序列化与反序列化
    Chrome 中的 JavaScript 断点设置和调试技巧
    JS 关闭 页面 浏览器 事件
    使用Jquery向一个空白网页动态创建一个iframe,及嵌入页面,和向嵌入页面传参
    js/jquery判断浏览器的方法小结
    Javascript中document.execCommand()的用法
    js 点击默认另存 ,不是打开 Blob 操作
    浅析jQuery删除节点的三个方法
    IE 和Firefox的js兼容性总结
    removeNode is not defined removeNode is not a function
  • 原文地址:https://www.cnblogs.com/djw12333/p/11268947.html
Copyright © 2011-2022 走看看