zoukankan      html  css  js  c++  java
  • Brief Tour of the Standard Library

    10.1. Operating System Interface

    The os module provides dozens of functions for interacting with the operating system:

    >>>
    >>> import os
    >>> os.getcwd()      # Return the current working directory
    'C:\Python34'
    >>> os.chdir('/server/accesslogs')   # Change current working directory
    >>> os.system('mkdir today')   # Run the command mkdir in the system shell
    0
    

    Be sure to use the import os style instead of from os import *. This will keep os.open() from shadowing the built-in open() function which operates much differently.

    The built-in dir() and help() functions are useful as interactive aids for working with large modules like os:

    >>>
    >>> import os
    >>> dir(os)
    <returns a list of all module functions>
    >>> help(os)
    <returns an extensive manual page created from the module's docstrings>
    

    For daily file and directory management tasks, the shutil module provides a higher level interface that is easier to use:

    >>>
    >>> import shutil
    >>> shutil.copyfile('data.db', 'archive.db')
    'archive.db'
    >>> shutil.move('/build/executables', 'installdir')
    'installdir'
    

    10.2. File Wildcards

    The glob module provides a function for making file lists from directory wildcard searches:

    >>>
    >>> import glob
    >>> glob.glob('*.py')
    ['primes.py', 'random.py', 'quote.py']
    

    10.3. Command Line Arguments

    Common utility scripts often need to process command line arguments. These arguments are stored in the sys module’s argv attribute as a list. For instance the following output results from running python demo.py one two three at the command line:

    >>>
    >>> import sys
    >>> print(sys.argv)
    ['demo.py', 'one', 'two', 'three']
    

    The getopt module processes sys.argv using the conventions of the Unix getopt() function. More powerful and flexible command line processing is provided by theargparse module.

    10.4. Error Output Redirection and Program Termination

    The sys module also has attributes for stdinstdout, and stderr. The latter is useful for emitting warnings and error messages to make them visible even when stdouthas been redirected:

    >>>
    >>> sys.stderr.write('Warning, log file not found starting a new one
    ')
    Warning, log file not found starting a new one
    

    The most direct way to terminate a script is to use sys.exit().

    10.5. String Pattern Matching

    The re module provides regular expression tools for advanced string processing. For complex matching and manipulation, regular expressions offer succinct, optimized solutions:

    >>>
    >>> import re
    >>> re.findall(r'f[a-z]*', 'which foot or hand fell fastest')
    ['foot', 'fell', 'fastest']
    >>> re.sub(r'([a-z]+) 1', r'1', 'cat in the the hat')
    'cat in the hat'
    

    When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

    >>>
    >>> 'tea for too'.replace('too', 'two')
    'tea for two'
    

    10.6. Mathematics

    The math module gives access to the underlying C library functions for floating point math:

    >>>
    >>> import math
    >>> math.cos(math.pi / 4)
    0.70710678118654757
    >>> math.log(1024, 2)
    10.0
    

    The random module provides tools for making random selections:

    >>>
    >>> import random
    >>> random.choice(['apple', 'pear', 'banana'])
    'apple'
    >>> random.sample(range(100), 10)   # sampling without replacement
    [30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
    >>> random.random()    # random float
    0.17970987693706186
    >>> random.randrange(6)    # random integer chosen from range(6)
    4
    

    The statistics module calculates basic statistical properties (the mean, median, variance, etc.) of numeric data:

    >>>
    >>> import statistics
    >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
    >>> statistics.mean(data)
    1.6071428571428572
    >>> statistics.median(data)
    1.25
    >>> statistics.variance(data)
    1.3720238095238095
    

    The SciPy project <http://scipy.org> has many other modules for numerical computations.

    10.7. Internet Access

    There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest are urllib.request for retrieving data from URLs and smtplib for sending mail:

    >>>
    >>> from urllib.request import urlopen
    >>> with urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl') as response:
    ...     for line in response:
    ...         line = line.decode('utf-8')  # Decoding the binary data to text.
    ...         if 'EST' in line or 'EDT' in line:  # look for Eastern Time
    ...             print(line)
    
    <BR>Nov. 25, 09:43:32 PM EST
    
    >>> import smtplib
    >>> server = smtplib.SMTP('localhost')
    >>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
    ... """To: jcaesar@example.org
    ... From: soothsayer@example.org
    ...
    ... Beware the Ides of March.
    ... """)
    >>> server.quit()
    

    (Note that the second example needs a mailserver running on localhost.)

    10.8. Dates and Times

    The datetime module supplies classes for manipulating dates and times in both simple and complex ways. While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output formatting and manipulation. The module also supports objects that are timezone aware.

    >>>
    >>> # dates are easily constructed and formatted
    >>> from datetime import date
    >>> now = date.today()
    >>> now
    datetime.date(2003, 12, 2)
    >>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
    '12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'
    
    >>> # dates support calendar arithmetic
    >>> birthday = date(1964, 7, 31)
    >>> age = now - birthday
    >>> age.days
    14368
    

    10.9. Data Compression

    Common data archiving and compression formats are directly supported by modules including: zlibgzipbz2lzmazipfile and tarfile.

    >>>
    >>> import zlib
    >>> s = b'witch which has which witches wrist watch'
    >>> len(s)
    41
    >>> t = zlib.compress(s)
    >>> len(t)
    37
    >>> zlib.decompress(t)
    b'witch which has which witches wrist watch'
    >>> zlib.crc32(s)
    226805979
    

    10.10. Performance Measurement

    Some Python users develop a deep interest in knowing the relative performance of different approaches to the same problem. Python provides a measurement tool that answers those questions immediately.

    For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach to swapping arguments. The timeit module quickly demonstrates a modest performance advantage:

    >>>
    >>> from timeit import Timer
    >>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
    0.57535828626024577
    >>> Timer('a,b = b,a', 'a=1; b=2').timeit()
    0.54962537085770791
    

    In contrast to timeit‘s fine level of granularity, the profile and pstats modules provide tools for identifying time critical sections in larger blocks of code.

    10.11. Quality Control

    One approach for developing high quality software is to write tests for each function as it is developed and to run those tests frequently during the development process.

    The doctest module provides a tool for scanning a module and validating tests embedded in a program’s docstrings. Test construction is as simple as cutting-and-pasting a typical call along with its results into the docstring. This improves the documentation by providing the user with an example and it allows the doctest module to make sure the code remains true to the documentation:

    def average(values):
        """Computes the arithmetic mean of a list of numbers.
    
        >>> print(average([20, 30, 70]))
        40.0
        """
        return sum(values) / len(values)
    
    import doctest
    doctest.testmod()   # automatically validate the embedded tests
    

    The unittest module is not as effortless as the doctest module, but it allows a more comprehensive set of tests to be maintained in a separate file:

    import unittest
    
    class TestStatisticalFunctions(unittest.TestCase):
    
        def test_average(self):
            self.assertEqual(average([20, 30, 70]), 40.0)
            self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
            with self.assertRaises(ZeroDivisionError):
                average([])
            with self.assertRaises(TypeError):
                average(20, 30, 70)
    
    unittest.main() # Calling from the command line invokes all tests
    

    10.12. Batteries Included

    Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities of its larger packages. For example:

    • The xmlrpc.client and xmlrpc.server modules make implementing remote procedure calls into an almost trivial task. Despite the modules names, no direct knowledge or handling of XML is needed.
    • The email package is a library for managing email messages, including MIME and other RFC 2822-based message documents. Unlike smtplib and poplibwhich actually send and receive messages, the email package has a complete toolset for building or decoding complex message structures (including attachments) and for implementing internet encoding and header protocols.
    • The json package provides robust support for parsing this popular data interchange format. The csv module supports direct reading and writing of files in Comma-Separated Value format, commonly supported by databases and spreadsheets. XML processing is supported by the xml.etree.ElementTree,xml.dom and xml.sax packages. Together, these modules and packages greatly simplify data interchange between Python applications and other tools.
    • The sqlite3 module is a wrapper for the SQLite database library, providing a persistent database that can be updated and accessed using slightly nonstandard SQL syntax.
    • Internationalization is supported by a number of modules including gettextlocale, and the codecs package.
  • 相关阅读:
    Atitit 服务器运维linux常用命令attilax总结.docx 1. 重要命令 1 1.1. 重启系列 1 1.2. 重启nginx 1 1.3. 重启tomcat 1 2. 其他 2 2
    Atitit 云计算体系树.docx Atitit 云计算之道 attilax著 艾龙 著 serverless bomb 1. 什么才是云计算的根本特征.. 2 2. 云计算体系 2 3. “云
    Atitit uri url格式规范与解析器 .URIparser 理解URI和URL的区别,我们引入URN这个概念。 URI = Universal Resource Identifier 统一资
    Atitit 2017年的技术趋势与未来的大技术趋势 1. 2017年的技术趋势 2 1.1. Web not native 2 1.2. 更加移动优先 ,,more spa 3 1.3. Ar
    Atitit 知识图谱管理 谱存储选型 与查询 目录 1. 知识图谱存储系统的选型。 1 1.1. 图数据库 neo4j 适合大规模数据 1 1.2. 关系数据库 小规模 2 2. 知识图谱查询语言
    Atitit rest框架选型总结 Resteasy 实现 但是麻烦 作为JAXRS的标准实现,RestEasy还具有以下亮点特性:   1)不需要配置文件,只要把JARs文件放到类路径里面
    Atitit 2016 技术趋势与没落技术 目录 1.1. 流水线 即代码通过编码而非配置CI/CD运行工具的方式,来定义部署 流水线 1 1.2. 将APIs当作产品 1 1.3. 无服务器架构
    Atitit 开发效率的提升艺术 艾提拉著 目录 1. 主要几个层次上简化开发 2 1.1. 管理创新 2 1.2. 开发体系方法使用简单方法 2 1.3. 技术选型使用简单框架模式 2 1.4.
    Atitit 2018 技术趋势与没落技术总结 目录 1. 2018 技术雷达 1 1.1. HOSTED IDENTITY MANAGEMENT AS A SERVICE (SaaS)身份管理
    Atitit 知识图谱 知识抽取 信息抽取的总结艾提拉总结 目录 1. 知识抽取 1 2. 数据源主要来自两种渠道( 2 2.1. 内部结构化数据vs 外部网页数据 2 3. 2. 知识图谱的数据来
  • 原文地址:https://www.cnblogs.com/dltts/p/5987756.html
Copyright © 2011-2022 走看看