Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
My idea:双指针,一个记录,一个重置备用,结果超时了/微笑,也是,我这时间复杂度也太高了。。。
class Solution: def minSubArrayLen(self, s, nums): su=0 count=0 end=len(nums) a=0 b=1 c=2 if(sum(nums)<s): return 0 for i in nums: if (su < s): su += i count = count + 1 else: break a=count su=0 count=0 while(c<end): while ((su < s)&(b<end)): su += nums[b] count = count + 1 b=b+1 if((a>count)&(su>=s)): a=count b=c c=c+1 su=0 count=0 return a
只能借鉴别人的咯
class Solution: def minSubArrayLen(self, s: int, nums: List[int]) -> int: n = len(nums) k,res,sum_i = -1,n+1,0 for i in range(n): sum_i += nums[i] if sum_i >= s: while sum_i-nums[k+1] >= s: sum_i -= nums[k+1] k += 1 res = min(res,i-k) if res == n+1: return 0 else: return res
前后指针,滑动窗口
这种题目还是得自己思考琢磨比较好,别想着遍历一股脑暴力解