zoukankan      html  css  js  c++  java
  • 落谷 P1410 子序列

    题目链接

    Discription

    给定长度为 (n) 的序列 (A)(n) 为偶数),判断是否能将其划分为两个长度为 (dfrac{N}{2}) 的严格递增子序列。

    Solution

    不妨按下标从小到大考虑每个数要分给哪一组,比较明显的 DP,朴素时空复杂度太高。

    在朴素中,我们需要知道四个信息:

    1. 第一组的长度
    2. 第一组最后一个数的数值
    3. 第二组的长度
    4. 第二组最后一个数的长度
    • 由于所有数都得填,所以当填完前 (i) 个数的时候,肯定有一组的末尾是 (A[i]),可以降一个维度
    • 考虑把可行性 DP,把一个状态,用贪心最优性搞在状态里,这题的最后一个数的数值显然越小越好(容错率越高)。

    这样状态数量就在两维了,每次转移其实就是考虑这个数到两个组中的哪一个,应该是可以接受的。

    状态设计

    (f_{i, j}) 为填完了前 (i) 个数,以 (a[i]) 结尾的那组长度为 (j),所能构成的另外一组最后一个数的的最小值。

    状态转移

    ”我为人人“ 式转移可能更好理解:

    • 考虑将 (A[i + 1]) 填入以 (A[i]) 结尾的组里,需要满足 $A[i] < A[i + 1] $,转移为 (f_{i + 1, j + 1} = min(f_{i, j}))
    • 将第 (A[i + 1]) 填入另一组组里,需要满足 (f_{i, j} < A[i + 1]),转移为 (f_{i + 1, i - j + 1} = min(A[i]))

    最后检测 (f_{n, n / 2})是否等于无穷即可。

    #include <cstdio>
    #include <iostream>
    #include <cstring>
    
    using namespace std;
    
    const int N = 2005, INF = 0x3f3f3f3f;
    
    int n, a[N], f[N][N >> 1];
    
    int main() {
    	while (~scanf("%d", &n)) {
    		memset(f, 0x3f, sizeof f);
    		for (int i = 1; i <= n; i++) scanf("%d", a + i);
    		f[1][1] = -1;
    		for (int i = 1; i < n; i++) {
    			for (int j = 1; j * 2 <= n; j++) {
    				if (f[i][j] == INF) continue;
    				if (a[i] < a[i + 1]) f[i + 1][j + 1] = min(f[i + 1][j + 1], f[i][j]);
    				if (f[i][j] < a[i + 1]) f[i + 1][i - j + 1] = min(f[i + 1][i - j + 1], a[i]);
    			}
    		}
    		puts(f[n][n / 2] != INF ? "Yes!" : "No!");
    	}
    	return 0;
    }
    
  • 相关阅读:
    Beetl 3中文文档 转载 http://ibeetl.com/guide/
    Beetl模板引擎入门教程
    Spring+Stomp+ActiveMq实现websocket长连接
    5672端口引发的一个大坑
    GeoServer中WMS、WFS的请求规范
    常用网址
    JAVA方法参数传递
    针对开发的缺陷管理
    不同逻辑顺序产生相同的结果编码如何决策
    怎样做一个软件项目经理
  • 原文地址:https://www.cnblogs.com/dmoransky/p/12468238.html
Copyright © 2011-2022 走看看