zoukankan      html  css  js  c++  java
  • NOI Online #1 入门组 魔法

    全网都是矩阵快速幂,我只会倍增DP

    其实这题与 AcWing 345. 牛站 还是比较像的,那题可以矩阵快速幂 / 倍增,这题也行。

    (Floyd) 预处理两点之间不用魔法最短距离 (d_{i, j}) 复杂度 (O(n^3))

    然后预处理两点之间至多用一个魔法的最短距离 (w_{i, j}),初始为 (w_{i, j} = d_{i, j}),枚举 (i, j) 和一条边 ((u, v, t)) (w_{i, j} = min(d[i][u] - t + d[v][j])),复杂度 (O(n^2m))

    然后把 (w) 数组当做邻接矩阵的新图,所以问题变成了走恰好 (k) 条边的最短路(可以理解多走不会变差,因为满足 (w_{i, i} <= 0)),这个问题就是 AcWing 345. 牛站 ,具体做法看 AcWing 345. 牛站的倍增 DP 思路,复杂度 (O(n^3 log K))

    注意细节,走 (0) 条边的最短路是 (d_{1, n}),注意 (f) 的初始值。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    using namespace std;
    
    typedef long long LL;
    
    const int N = 105, M = 2505, L = 20;
    const LL INF = 1e18;
    
    int n, m, K, l;
    LL d[N][N], w[N][N], g[L][N][N], f[N], t[N];
    
    struct E{
    	int u, v, w;
    } e[M];
    
    int main() {
    	memset(g, 0x3f, sizeof g);
    	scanf("%d%d%d", &n, &m, &K);
    	l = log2(K);
    	for (int i = 1; i <= n; i++)
    		for (int j = 1; j <= n; j++) if (i != j) d[i][j] = INF;
    	for (int i = 1; i <= m; i++) {
    		scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
    		d[e[i].u][e[i].v] = min(d[e[i].u][e[i].v], (LL)e[i].w);
    	}
    	for (int k = 1; k <= n; k++)
    		for (int i = 1; i <= n; i++)
    			for (int j = 1; j <= n; j++) d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    	for (int i = 1; i <= n; i++) {
    		for (int j = 1; j <= n; j++) {
    			w[i][j] = d[i][j];
    			for (int k = 1; k <= m; k++)
    				w[i][j] = min(w[i][j], d[i][e[k].u] - e[k].w + d[e[k].v][j]);
    			g[0][i][j] = w[i][j];
    		}
    	}
    	for (int c = 1; c <= l; c++) 
    		for (int i = 1; i <= n; i++) 
    			for (int j = 1; j <= n; j++) 
    				for (int k = 1; k <= n; k++) 
    					g[c][i][j] = min(g[c][i][j], g[c - 1][i][k] + g[c - 1][k][j]);
    	for (int i = 1; i <= n; i++) f[i] = d[1][i];
    	for (int c = 0; c <= l; c++) {
    		if (K >> c & 1) {
    			for (int i = 1; i <= n; i++) t[i] = f[i];
    			memset(f, 0x3f, sizeof f);
    			for (int i = 1; i <= n; i++) 
    				for (int j = 1; j <= n; j++) f[i] = min(f[i], t[j] + g[c][j][i]);
    		}
    	}
    	printf("%lld
    ", f[n]);
    	return 0;
    }
    
  • 相关阅读:
    CodeForces gym Nasta Rabbara lct
    bzoj 4025 二分图 lct
    CodeForces 785E Anton and Permutation
    bzoj 3669 魔法森林
    模板汇总——快读 fread
    bzoj2049 Cave 洞穴勘测 lct
    bzoj 2002 弹飞绵羊 lct裸题
    HDU 6394 Tree 分块 || lct
    HDU 6364 Ringland
    nyoj221_Tree_subsequent_traversal
  • 原文地址:https://www.cnblogs.com/dmoransky/p/12807869.html
Copyright © 2011-2022 走看看