被构造橄榄了/ll
当 (i<10^{18}) 时,有 (f(i)=f(i+10^{18})+1).
设 (s=sum_{i=1}^{10^{18}}f(i)),根据结论,可以归纳证明 (sum_{i=1+b}^{10^{18}+b}f(i)=s+bpmod a),所以当 (b=-spmod a) 的时候,构造 (L=1+b,r=10^{18}+b) 即可满足条件。
如何求出 (s)?求 (sum_{i=1}^{10^{18}-1}) 再 (+1) 即可得到。
考虑任意一位数的贡献,其为 ((0+1+2+3+...+9) imes 10^{17}),一共有 (18) 位,所以 (s=45 imes 18 imes 10^{17}=81 imes 10^{18}).
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
#define pb emplace_back
#define mp std::make_pair
#define fi first
#define se second
typedef long long ll;
typedef std::pair<int, int> pii;
typedef std::pair<ll, int> pli;
typedef std::pair<ll, ll> pll;
typedef std::vector<int> vi;
typedef std::vector<ll> vll;
const ll mod = 998244353;
ll Add(ll x, ll y) { return (x+y>=mod) ? (x+y-mod) : (x+y); }
ll Mul(ll x, ll y) { return x * y % mod; }
ll Mod(ll x) { return x < 0 ? (x + mod) : (x >= mod ? (x-mod) : x); }
ll cadd(ll &x, ll y) { return x = (x+y>=mod) ? (x+y-mod) : (x+y); }
template <typename T> T Max(T x, T y) { return x > y ? x : y; }
template <typename T> T Min(T x, T y) { return x < y ? x : y; }
template <typename T>
T &read(T &r) {
r = 0; bool w = 0; char ch = getchar();
while(ch < '0' || ch > '9') w = ch == '-' ? 1 : 0, ch = getchar();
while(ch >= '0' && ch <= '9') r = r * 10 + (ch ^ 48), ch = getchar();
return r = w ? -r : r;
}
ll a, b, s = 1000000000000000000ll;
signed main() {
read(a); s %= a; b = a-(s*9%a*9%a+1)%a;
printf("%lld %lld
", b+1, b+1000000000000000000ll);
return 0;
}