zoukankan      html  css  js  c++  java
  • USACO Broken Necklace

    1. 算法:从一个节点开始,假如是r,如果下一个是r或者w,继续,一直到下一个为b为止,然后从b开始看下一个,如果是b或者w,继续,如果是r停止,处理“环”的问题,用了求余,可以使结尾的下一个变成第一个,但是要注意,最后结果不能大于n。

    2. 这是O(n^2) 的复杂度吧。


    /*
    ID: dollarzhaole
    PROG: beads
    LANG: C++
    */
    #include <iostream>
    #include <fstream>
    #include <string>
    
    using namespace std;
    
    int main()
    {
        ofstream fout ("beads.out");
        ifstream fin ("beads.in");
        int n, i, j, sum, max = 0;
        int sum_w = 0, sum_r = 0, sum_b = 0;
        char tmp;
        string str;
        fin >> n >> str;
        for (i = 0; i < n; i++)
        {
            if (str[i] == 'w')
                sum_w++;
            else if (str[i] == 'r')
                sum_r++;
            else if (str[i] == 'b')
                sum_b++;
        }
        if (sum_b + sum_w == n || sum_r + sum_w == n)
            fout << n << endl;
        else
        {
            for (i = 0; i < n; i++)
            {
                sum = 0;
                if (str[i] == 'r' || str[i] == 'b')
                {
                    j = i;
                    while(str[j%n] == str[i] || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    while(str[j%n] != str[i] || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                }
                else if (str[i] == 'w')
                {
                    j = i;
                    while (str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    tmp = str[j%n];
                    while (str[j%n] == tmp || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    while (str[j%n] != tmp || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                }
                if (sum >= n)   sum = n;
                if (max < sum)  max = sum;
            }
            fout << max << endl;
        }
        return 0;
    }
    


    以下是参考代买,复杂度是O(n)。

    /*Dynamic Programming is good method for solving this problem in O(N). If we consider two copies of the string we easy transform cyclic configuration of the necklace to linear. Now we can compute for each breaking point how many beads of the same color can be collected on the left and on the right from the breaking point. I show how we can compute it only for the left side. For right side it is analogical. Let r[p] and b[p] be the number of red / blue beads that can be collected, when necklace is broken in point p. If we know this and color of next bead (c) we can compute r[p+1] and b[p+1].
     r[0] = p[0] = 0
     If c = 'r' then r[p+1] = r[p] + 1 and b[p+1] = 0
            because the length of the blue beads is 0.
     if c = 'b' then b[p+1] = b[p] + 1 and r[p+1] = 0
     if c = 'w' then both length of the red and length of blue beads
                 can be longer.
    so r[p+1] = r[p]+1 and b[p+1] = b[p] + 1.
    The number of beads that can be collected in breaking point p is then max(left[r[p]], left[b[p]]) + max(right[r[p]], right[b[p]]). And the maximum from this value is answer for the problem.
    */
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    
    using namespace std;
    
    FILE *in,*out;
    
    int main () {
       in = fopen("beads.in", "r");
       out = fopen ("beads.out", "w");
    
       int n;
       char tmp[400], s[800];
       fscanf(in, "%d %s", &n, tmp);
    
       strcpy(s, tmp);
       strcat(s, tmp);
    
       int left[800][2], right[800][2];
       left[0][0] = left[0][1] = 0;
    
       for (int i=1; i<= 2 * n; i++){
           if (s[i - 1] == 'r'){
               left[i][0] = left[i - 1][0] + 1;
               left[i][1] = 0;
           } else if (s[i - 1] == 'b'){
               left[i][1] = left[i - 1][1] + 1;
               left[i][0] = 0;
           } else {
               left[i][0] = left[i - 1][0] + 1;
               left[i][1] = left[i - 1][1] + 1;
           }
         }
    
       right[2 * n][0] = right[2 * n][1] = 0;
       for (int i=2 * n - 1; i >= 0; i--){
           if (s[i] == 'r'){
               right[i][0] = right[i + 1][0] + 1;
               right[i][1] = 0;
           } else if (s[i] == 'b'){
               right[i][1] = right[i + 1][1] + 1;
               right[i][0] = 0;
           } else {
               right[i][0] = right[i + 1][0] + 1;
               right[i][1] = right[i + 1][1] + 1;
           }
       }
    
       int m = 0;
       for (int i=0; i<2 * n; i++)
           m = max(m, max(left[i][0], left[i][1]) + max(right[i][0], right[i][1]));
       m = min(m, n);
       fprintf(out, "%d\n", m);
       fclose(in); fclose(out);
       return 0;
    }


  • 相关阅读:
    浅析Vue3相关基础知识:Vue3应用配置、重写的vmodel、emits 选项、getCurrentInstance()获取实例、采用mitt实现全局通讯、vuerouter的新特性
    Vue3结合TS项目开发实践:Composition API的风格理念、关注点分离、如何组织TS进行项目开发(采用声明文件来管理接口及所需类型/目录结构推荐)
    TypeScript类型守卫、联合类型、交叉类型
    Android开发历程_14(广播机制)
    OpenGL_Qt学习笔记之_03(平面图形的着色和旋转)
    OpenGL_Qt学习笔记之_06(纹理滤波、光照和色彩融合)
    Qt学习之路_12(简易数据管理系统)
    特征点检测学习_2(surf算法)
    Kinect+OpenNI学习笔记之2(获取kinect的颜色图像和深度图像)
    PCA算法学习_1(OpenCV中PCA实现人脸降维)
  • 原文地址:https://www.cnblogs.com/dollarzhaole/p/3188950.html
Copyright © 2011-2022 走看看