zoukankan      html  css  js  c++  java
  • USACO Broken Necklace

    1. 算法:从一个节点开始,假如是r,如果下一个是r或者w,继续,一直到下一个为b为止,然后从b开始看下一个,如果是b或者w,继续,如果是r停止,处理“环”的问题,用了求余,可以使结尾的下一个变成第一个,但是要注意,最后结果不能大于n。

    2. 这是O(n^2) 的复杂度吧。


    /*
    ID: dollarzhaole
    PROG: beads
    LANG: C++
    */
    #include <iostream>
    #include <fstream>
    #include <string>
    
    using namespace std;
    
    int main()
    {
        ofstream fout ("beads.out");
        ifstream fin ("beads.in");
        int n, i, j, sum, max = 0;
        int sum_w = 0, sum_r = 0, sum_b = 0;
        char tmp;
        string str;
        fin >> n >> str;
        for (i = 0; i < n; i++)
        {
            if (str[i] == 'w')
                sum_w++;
            else if (str[i] == 'r')
                sum_r++;
            else if (str[i] == 'b')
                sum_b++;
        }
        if (sum_b + sum_w == n || sum_r + sum_w == n)
            fout << n << endl;
        else
        {
            for (i = 0; i < n; i++)
            {
                sum = 0;
                if (str[i] == 'r' || str[i] == 'b')
                {
                    j = i;
                    while(str[j%n] == str[i] || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    while(str[j%n] != str[i] || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                }
                else if (str[i] == 'w')
                {
                    j = i;
                    while (str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    tmp = str[j%n];
                    while (str[j%n] == tmp || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    while (str[j%n] != tmp || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                }
                if (sum >= n)   sum = n;
                if (max < sum)  max = sum;
            }
            fout << max << endl;
        }
        return 0;
    }
    


    以下是参考代买,复杂度是O(n)。

    /*Dynamic Programming is good method for solving this problem in O(N). If we consider two copies of the string we easy transform cyclic configuration of the necklace to linear. Now we can compute for each breaking point how many beads of the same color can be collected on the left and on the right from the breaking point. I show how we can compute it only for the left side. For right side it is analogical. Let r[p] and b[p] be the number of red / blue beads that can be collected, when necklace is broken in point p. If we know this and color of next bead (c) we can compute r[p+1] and b[p+1].
     r[0] = p[0] = 0
     If c = 'r' then r[p+1] = r[p] + 1 and b[p+1] = 0
            because the length of the blue beads is 0.
     if c = 'b' then b[p+1] = b[p] + 1 and r[p+1] = 0
     if c = 'w' then both length of the red and length of blue beads
                 can be longer.
    so r[p+1] = r[p]+1 and b[p+1] = b[p] + 1.
    The number of beads that can be collected in breaking point p is then max(left[r[p]], left[b[p]]) + max(right[r[p]], right[b[p]]). And the maximum from this value is answer for the problem.
    */
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    
    using namespace std;
    
    FILE *in,*out;
    
    int main () {
       in = fopen("beads.in", "r");
       out = fopen ("beads.out", "w");
    
       int n;
       char tmp[400], s[800];
       fscanf(in, "%d %s", &n, tmp);
    
       strcpy(s, tmp);
       strcat(s, tmp);
    
       int left[800][2], right[800][2];
       left[0][0] = left[0][1] = 0;
    
       for (int i=1; i<= 2 * n; i++){
           if (s[i - 1] == 'r'){
               left[i][0] = left[i - 1][0] + 1;
               left[i][1] = 0;
           } else if (s[i - 1] == 'b'){
               left[i][1] = left[i - 1][1] + 1;
               left[i][0] = 0;
           } else {
               left[i][0] = left[i - 1][0] + 1;
               left[i][1] = left[i - 1][1] + 1;
           }
         }
    
       right[2 * n][0] = right[2 * n][1] = 0;
       for (int i=2 * n - 1; i >= 0; i--){
           if (s[i] == 'r'){
               right[i][0] = right[i + 1][0] + 1;
               right[i][1] = 0;
           } else if (s[i] == 'b'){
               right[i][1] = right[i + 1][1] + 1;
               right[i][0] = 0;
           } else {
               right[i][0] = right[i + 1][0] + 1;
               right[i][1] = right[i + 1][1] + 1;
           }
       }
    
       int m = 0;
       for (int i=0; i<2 * n; i++)
           m = max(m, max(left[i][0], left[i][1]) + max(right[i][0], right[i][1]));
       m = min(m, n);
       fprintf(out, "%d\n", m);
       fclose(in); fclose(out);
       return 0;
    }


  • 相关阅读:
    RTK-Mannual-1-User Requirements&Installation and Uninstallation&Real-Time Positioning with RTKNAVI
    第一章-1.四元素的定义和性质
    ubuntu下的公式编辑器-latex
    SL-IMU-5、6-惯性导航解算方法以及惯性导航误差分析
    卫星导航系统-第16讲-船用惯性导航系统与卫星导航系统的组合-2
    卫星导航系统-第16讲-船用惯性导航系统与卫星导航系统的组合-1
    卫星导航系统-第14讲-差分定位方法-2
    卫星导航系统-第14讲-差分定位方法-1
    卫星导航系统-第13讲-差分定位方法-2
    【无线安全实践入门】破解WiFi密码的多个方法
  • 原文地址:https://www.cnblogs.com/dollarzhaole/p/3188950.html
Copyright © 2011-2022 走看看