zoukankan      html  css  js  c++  java
  • USACO Broken Necklace

    1. 算法:从一个节点开始,假如是r,如果下一个是r或者w,继续,一直到下一个为b为止,然后从b开始看下一个,如果是b或者w,继续,如果是r停止,处理“环”的问题,用了求余,可以使结尾的下一个变成第一个,但是要注意,最后结果不能大于n。

    2. 这是O(n^2) 的复杂度吧。


    /*
    ID: dollarzhaole
    PROG: beads
    LANG: C++
    */
    #include <iostream>
    #include <fstream>
    #include <string>
    
    using namespace std;
    
    int main()
    {
        ofstream fout ("beads.out");
        ifstream fin ("beads.in");
        int n, i, j, sum, max = 0;
        int sum_w = 0, sum_r = 0, sum_b = 0;
        char tmp;
        string str;
        fin >> n >> str;
        for (i = 0; i < n; i++)
        {
            if (str[i] == 'w')
                sum_w++;
            else if (str[i] == 'r')
                sum_r++;
            else if (str[i] == 'b')
                sum_b++;
        }
        if (sum_b + sum_w == n || sum_r + sum_w == n)
            fout << n << endl;
        else
        {
            for (i = 0; i < n; i++)
            {
                sum = 0;
                if (str[i] == 'r' || str[i] == 'b')
                {
                    j = i;
                    while(str[j%n] == str[i] || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    while(str[j%n] != str[i] || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                }
                else if (str[i] == 'w')
                {
                    j = i;
                    while (str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    tmp = str[j%n];
                    while (str[j%n] == tmp || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                    while (str[j%n] != tmp || str[j%n] == 'w')
                    {
                        sum++;
                        j++;
                    }
                }
                if (sum >= n)   sum = n;
                if (max < sum)  max = sum;
            }
            fout << max << endl;
        }
        return 0;
    }
    


    以下是参考代买,复杂度是O(n)。

    /*Dynamic Programming is good method for solving this problem in O(N). If we consider two copies of the string we easy transform cyclic configuration of the necklace to linear. Now we can compute for each breaking point how many beads of the same color can be collected on the left and on the right from the breaking point. I show how we can compute it only for the left side. For right side it is analogical. Let r[p] and b[p] be the number of red / blue beads that can be collected, when necklace is broken in point p. If we know this and color of next bead (c) we can compute r[p+1] and b[p+1].
     r[0] = p[0] = 0
     If c = 'r' then r[p+1] = r[p] + 1 and b[p+1] = 0
            because the length of the blue beads is 0.
     if c = 'b' then b[p+1] = b[p] + 1 and r[p+1] = 0
     if c = 'w' then both length of the red and length of blue beads
                 can be longer.
    so r[p+1] = r[p]+1 and b[p+1] = b[p] + 1.
    The number of beads that can be collected in breaking point p is then max(left[r[p]], left[b[p]]) + max(right[r[p]], right[b[p]]). And the maximum from this value is answer for the problem.
    */
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    
    using namespace std;
    
    FILE *in,*out;
    
    int main () {
       in = fopen("beads.in", "r");
       out = fopen ("beads.out", "w");
    
       int n;
       char tmp[400], s[800];
       fscanf(in, "%d %s", &n, tmp);
    
       strcpy(s, tmp);
       strcat(s, tmp);
    
       int left[800][2], right[800][2];
       left[0][0] = left[0][1] = 0;
    
       for (int i=1; i<= 2 * n; i++){
           if (s[i - 1] == 'r'){
               left[i][0] = left[i - 1][0] + 1;
               left[i][1] = 0;
           } else if (s[i - 1] == 'b'){
               left[i][1] = left[i - 1][1] + 1;
               left[i][0] = 0;
           } else {
               left[i][0] = left[i - 1][0] + 1;
               left[i][1] = left[i - 1][1] + 1;
           }
         }
    
       right[2 * n][0] = right[2 * n][1] = 0;
       for (int i=2 * n - 1; i >= 0; i--){
           if (s[i] == 'r'){
               right[i][0] = right[i + 1][0] + 1;
               right[i][1] = 0;
           } else if (s[i] == 'b'){
               right[i][1] = right[i + 1][1] + 1;
               right[i][0] = 0;
           } else {
               right[i][0] = right[i + 1][0] + 1;
               right[i][1] = right[i + 1][1] + 1;
           }
       }
    
       int m = 0;
       for (int i=0; i<2 * n; i++)
           m = max(m, max(left[i][0], left[i][1]) + max(right[i][0], right[i][1]));
       m = min(m, n);
       fprintf(out, "%d\n", m);
       fclose(in); fclose(out);
       return 0;
    }


  • 相关阅读:
    字符的编码
    数据的基本类型和内置方法(二)
    基本的数据类型和内置方法介绍 (一)
    流程运算 if while for
    用户交换 基本数据类型 基本运算符 格式化输出
    机器语言发展简介和变量的介绍
    计算机基础
    Python学习建议和要求总结
    CH135 最大子序和 题解报告
    HRBUST1356 Leyni,罗莉和队列 题解报告
  • 原文地址:https://www.cnblogs.com/dollarzhaole/p/3188950.html
Copyright © 2011-2022 走看看