zoukankan      html  css  js  c++  java
  • 2^n的第一位数字 soj 3848 mathprac

        Time Limit: 3000 MS    Memory Limit: 65536 K



                                                          mathprac

    Description



    One lovely afternoon, Bessie's friend Heidi was helping Bessie
    review for her upcoming math exam.

    Heidi presents two integers A (0 <= A <= 45) and B (1 <= B <= 9)
    to Bessie who must respond with an integer E in the range 1..62.
    E is the smallest integer in that range that is strictly greater
    than A and also has B as the first digit of 2 raised to the E-th
    power. If there is no answer, Bessie responds with 0.

    Help Bessie correctly answer all of Heidi's questions by calculating
    her responses.

    By way of example, consider A=1 and B=6. Bessie might generate a table
    like this:
             E         2^E    First digit of 2^E
             2          4            4
             3          8            8
             4         16            1
             5         32            3
             6         64            6      <-- matches B

    Thus, E=6 is the proper answer.

    NOTE: The value of 2^44 does not fit in a normal 32-bit integer.

    Input



    * Line 1: Two space-separated integers: A and B

    Output



    * Line 1: A single integer E calculated as above

    Sample Input



    1 6

    Sample Output



    6

    题意:

    就是求2^n的第一位数字;

    由于2^n=t*10^k,那么也就是求t的第一位。

    log10(2^n)=n*log10(2)

                    =log10(t*10^k)

                    =log10(t)+k   k为整数

    求出n*log10(2)减去k即可求得log10(t),然后求出10^log10(t),对其取整,即为所求。

    #include<iostream>
    #include
    <math.h>
    using namespace std;

    int main(void)
    {
    int A,B;
    while(scanf("%d%d",&A,&B)==2)
    {
    int i;
    double d;
    int digit;
    int p;
    for(i=A+1;i<=62;i++)
    {
    d
    =i*log10(2.0);
    p
    =(int)(d);
    digit
    =(int)pow(10.0,d-p);
    if(digit==B)
    {
    printf(
    "%d\n",i);
    break;
    }
    }
    if(i==63)
    printf(
    "0\n");
    }
    return 0;
    }



  • 相关阅读:
    Windows系统Nessus离线(Offline) 版的安装
    Openstack中keystone与外部LDAP Server的集成
    MySQL常用指令
    关于RequestParam在不同的Spring版本上,接口在controller重载时注解可能失效的踩坑记录
    利用反射注册SpringCache的RedisCacheManager缓存信息
    缩减项目代码中的大面积if策略
    Pentaho Report Designer 报表系统
    五种设计模式的分享
    反射的实践测试
    关于内外网分离情况下双网卡访问速度问题的解决
  • 原文地址:https://www.cnblogs.com/dolphin0520/p/2012982.html
Copyright © 2011-2022 走看看