zoukankan      html  css  js  c++  java
  • 学习XOR

    //f(x;W,c,w,b)=w*max{0, W*x+c}+b

    #include <iostream>
    #include <vector>
    #include <algorithm>

    template <class T>
    double tanh(T& z) {
      double ret;
      ret = (exp(z)-exp((-1)*z))/(exp(z)+exp((-1)*z));
      return ret;
    }

    template <class T>
    double sigmoid(T& z) {
      return 1.0f/(1.0f+exp((-1)*z));
    }

    int main() {
      int w[][2]={{1, 1}, {1,1}};
      int bias[]={0, -1};
      int weights[] = {1, -2};
      int x[][2]={{0, 0}, {0, 1}, {1, 0}, {1, 1}};
      int c[][2]={{0, 0}, {0, 0}, {0, 0}, {0, 0}};

      /*x[4][2] * w[2][2] = c[4][2]*/
      for(size_t i=0;i<4;++i) {
        for(size_t j=0;j<2;++j) {
          int sum = 0;
          for(size_t k=0;k<2;++k) {
            sum += x[i][k] * w[k][j];
          }
          c[i][j] = sum;
        }
      }

      for(size_t i=0;i<4;++i) {
        for(size_t j=0;j<2;++j) {
          std::cout<<c[i][j]<<" ";
        }
        std::cout<<std::endl;
      }

      std::cout<<"add bias, rectified linear unit:\n";

      for(size_t i=0;i<4;++i) {
        for(size_t j=0;j<2;++j) {
          c[i][j] = c[i][j] + bias[j];
          c[i][j] = std::max(c[i][j], 0);
          std::cout<<c[i][j]<<" ";
        }
        std::cout<<std::endl;
      }

      for(size_t i=0;i<4;++i) {
        for(size_t j=0;j<1;++j) {
          int sum=0;
          for(size_t k=0;k<2;++k) {
            sum += c[i][k] * weights[k];
          }
          c[i][j] = sum;
        }
      }

      std::cout<<"the XOR result:\n";
      for(size_t i=0; i<4; ++i) {
        for(size_t j=0;j<2;++j) {
          std::cout<<x[i][j]<<" ";
        }
      std::cout<<c[i][0]<<"\n";
      }

      return 0;
    }

    With the input patterns (0,0) and (1,1) located on opposite corners of the unit square, and likewise

    for the other two input patterns (0,1) and (1,0), it is clear that we cannot construct a straight line

    for a decision boundary so that (0,0) and (0,1) lie in one dicision region and (0,1) and (1,0) lie in the

    other decision region. In other words, the singlelayer perceptron cannot solve the XOR problem.

  • 相关阅读:
    PHP(表单元素)
    PHP(一般标签介绍,标签特性,实体名称,绝对路径与相对路径)
    Oracle课程档案,第十七天
    Oracle课程档案,第十六天
    Oracle课程档案,第十四天
    Oracle课程档案,第十五天
    Oracle课程档案,第十三天
    Oracle课程档案,第十二天
    Oracle课程档案。第十一天
    [haoi2011]防线修建
  • 原文地址:https://www.cnblogs.com/donggongdechen/p/9217023.html
Copyright © 2011-2022 走看看