zoukankan      html  css  js  c++  java
  • LeetCode OJ

    题目:

    There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

    解题思路:

    将原问题转变成一个寻找第k小数的问题(假设两个原序列升序排列),这样中位数实际上是第(m+n)/2小的数。所以只要解决了第k小数的问题,原问题也得以解决。

    首先假设数组A和B的元素个数都大于k/2,我们比较A[k/2-1]和B[k/2-1]两个元素,这两个元素分别表示A的第k/2小的元素和B的第k/2小的元素。这两个元素比较共有三种情况:>、<和=。如果A[k/2-1]<B[k/2-1],这表示A[0]到A[k/2-1]的元素都在A和B合并之后的前k小的元素中。换句话说,A[k/2-1]不可能大于两数组合并之后的第k小值,所以我们可以将其抛弃。

    证明也很简单,可以采用反证法。假设A[k/2-1]大于合并之后的第k小值,我们不妨假定其为第(k+1)小值。由于A[k/2-1]小于B[k/2-1],所以B[k/2-1]至少是第(k+2)小值。但实际上,在A中至多存在k/2-1个元素小于A[k/2-1],B中也至多存在k/2-1个元素小于A[k/2-1],所以小于A[k/2-1]的元素个数至多有k/2+ k/2-2,小于k,这与A[k/2-1]是第(k+1)的数矛盾。

    当A[k/2-1]>B[k/2-1]时存在类似的结论。

    当A[k/2-1]=B[k/2-1]时,我们已经找到了第k小的数,也即这个相等的元素,我们将其记为m。由于在A和B中分别有k/2-1个元素小于m,所以m即是第k小的数。(这里可能有人会有疑问,如果k为奇数,则m不是中位数。这里是进行了理想化考虑,在实际代码中略有不同,是先求k/2,然后利用k-k/2获得另一个数。)

    通过上面的分析,我们即可以采用递归的方式实现寻找第k小的数。此外我们还需要考虑几个边界条件:

    • 如果A或者B为空,则直接返回B[k-1]或者A[k-1];
    • 如果k为1,我们只需要返回A[0]和B[0]中的较小值;
    • 如果A[k/2-1]=B[k/2-1],返回其中一个;

    代码:

     1 class Solution {
     2 public:
     3     int findKth(int A[], int m, int B[], int n, int k) {
     4         if (m > n) return findKth(B, n, A, m, k);
     5         
     6         if (m == 0) return B[k-1];
     7         if (n == 0) return A[k-1];
     8         if (k == 1) return min(A[0], B[0]);
     9         
    10         int part_a = min(k>>1, m), part_b = k - part_a;
    11         
    12         if (A[part_a - 1] < B[part_b - 1]) {
    13             return findKth(A + part_a, m - part_a, B, n, k - part_a);
    14         } else if (A[part_a - 1] > B[part_b - 1]) {
    15             return findKth(A, m, B + part_b, n - part_b, k-part_b);
    16         } else {
    17             return A[part_a - 1];
    18         }
    19      }
    20     double findMedianSortedArrays(int A[], int m, int B[], int n) {
    21         if ((m+n) & 1) {
    22             return findKth(A, m, B, n, (m + n) / 2 + 1);
    23         } else {
    24             return (findKth(A, m, B, n, (m + n) / 2) + findKth(A, m, B, n, (m + n) / 2 + 1)) / 2.0;
    25         }
    26     }
    27 };
  • 相关阅读:
    javascript验证QQ号、邮箱和手机号码
    js 引擎 和 html 渲染引擎
    ASP.NET MVC 4 简介
    SqlDateTime overflow / SqlDateTime 溢出
    ASP.NET MVC ViewBag/ViewData/TempData区别
    C#内存分配
    Repeater数据绑定和操作
    Uploadify导致Chrome频繁崩溃Crash
    巧用Ajax的beforeSend 提高用户体验
    ASP.NET MVC
  • 原文地址:https://www.cnblogs.com/dongguangqing/p/3810792.html
Copyright © 2011-2022 走看看