zoukankan      html  css  js  c++  java
  • 数学 必修三 第二章 统计

    数学 必修三  第二章 统计  

    一:随机抽样

      从元素个数为N的总体中不放回地抽取容量为n的杨被,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这样抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

      6个同样质地的小球,从中不放回地抽取3个小球:

      第一次抽取,6个中抽取1个 ,每个球的被抽取的可能性是1/6     并且是相等的

      第二次抽取,5个中抽取1个,每个球被抽取的可能性都是1/5;

      第三次抽取,4个中抽取1个,每个球被抽取的可能性都是1/4;

      

      常哟昂的简单随机抽样方法有抽签法随机数表示

      1.抽签法

      100个灯管寿命     不放回的抽取10个灯管的寿命构成简单的随机样本

      方法:给100个灯管寿命编号,每一只灯管寿命对应1-100中的唯一一个数,再把这100个号码分别写道纸上,然后抽取 10个号码   ,和这10个号码对应的日光灯管寿命就构成了一个简单随机样本。

      抽签法  比较简单    但是当总体的容量非常大时,并不适用,同时   总体要搅拌均匀。

      2.随机数表法

      随机数表   是由0,1,2,3,4...9这10个数字组成的鼠标,并且表中的每一位置出现各个数字的可能性相同。程序可生成随机数表,由5个数组成一组   ,然后通过随机数表来抽取样本。

      案例:850颗种子的发芽率   从中抽取50颗种子进行实验   使用随机数表来抽取

      步骤:

      1.编号从001   002  ...850

      2.给出的随机数是5位数一组 ,使用各个5位数组的前3位,从各组数中任选一个前3为小于或等于850的数作为起始号码。例如从第一行第7组数字开始,取530作为抽取的50颗种子中的第1个的代号。接着继续向右读取   如果遇到大于850的数字  则跳过,取到50个数字即可。

                随机数表例子   

     

      数字随机数生成: c++          dev c++编译器        linux系统    以下程序可以生成上面的图片

    #include <iostream>

    #include <cstdlib>
    #include <ctime>

    #define random(a,b) (rand()%(b-a)+a)    //宏定义 用于扩展

    using namespace std;

    int main()
    {
      srand((unsigned ) time(NULL));      //随机数种子
      for(int i=0;i<85;i++)          //共850个数字
      {
        for(int j=0;j<10;j++)
          {
            cout<<random(10000,99999)<<" ";   //random   产生  10000到99999之间的随机数
          }
        cout<<" ";              //10个数一行  之后换行   
      }
      return 0;
    }

      c++没有自带的random函数,要实现随机数的生成就需要使用rand和srand 

      1.rand()   仅仅返回一个0至RAND_MAX之间的随机数 ,而RAND_MAX的值与int位数有关,最小是32767.不过rand()是一次性的,因为系统默认的随机数种子为1,只要随机数种子不变,其生成的水技术序列就不会改变。

      2.srand()   可以用来设置rand()产生随机数时的随机数种子。通过设置不同的种子以获得不同的随机数序列。

      产生不同随机数种子的方法:srand( unsigned int ) ( time(NULL))   利用系统的时钟  来产生不同的随机数种子

        调用time()  需要加入头文件  <ctime>

    #include<iostream>

    #include<cstdlib>
    #include<ctime>
     using namespace std;
    int main()
    {
      srand((unsigned)time(NULL));  //生成种子
      for(int i=0;i<10;i++)
        cout<<rand()<<' ';         //产生随机数
      return 0;
    }

    通式

    产生一定范围随机数的通用表示公式是:

    • 取得(0,x)的随机整数:rand()%x;
    • 取得(a,b)的随机整数:rand()%(b-a);
    • 取得[a,b)的随机整数:rand()%(b-a)+a;
    • 取得[a,b]的随机整数:rand()%(b-a+1)+a
    • 取得(a,b]的随机整数:rand()%(b-a)+a+1;
    • 取得0-1之间的浮点数:rand()/double(RAND_MAX)。

     练习A

      全班同学爱听数学课的比例  计划抽取8名同学做调查,请你用抽签法抽取一个样本。

      假设共50名学生   从1-50编号 贴纸条或小球,然后每次从总体中抽取一个,直到取第8个时停止,在抽取的过程中,每个小球被抽取的可能性都是1/当时的总数,之后再查看这8名学生爱听数学课成为样本。

    练习B1

      某居民区有730户居民,居民会计划从中抽取25户调查其家庭收入状况,利用简单随机样本来统计。

      730户居民编号000-730;

      随机生成730个数字,每个数字由5个个位数组合而成。取后3位数为整数,大于730的数需要跳过,共取25个。

    练习B2

      制作1000个一位数的随机数表,并检查0-9这10个数在表中出现的可能性是否相同?

      代码:

    // 生成1000个0-3的数字组成的随机数表 

    #include <iostream>
    #include <cstdlib>
    #include <ctime>

    #define random(a,b) (rand()%(b-a+1)+a) //宏定义

      using namespace std;

    int main()
    {
      srand((unsigned ) time(NULL));
       int cn0=0;
       int cn1=0;
       int cn2=0;
         int cn3=0;
         int number=0;
      for(int i=0;i<100;i++)
      {
        for(int j=0;j<10;j++)
        {
          number=random(0,3);
          if(number==0)
          {
            cn0++; //0的数字个数
          }
          else if(number==1)
          {
            cn1++; //1的数字个数
          }
          else if(number==2)
          {
            cn2++; //2的数字个数
          }
          else if(number==3)
          {
            cn3++; //3的数字个数
          }
            cout<<number<<" ";
        }  
          cout<<" ";
      }
        cout<<"0的个数为:"<<cn0<<";;;1的个数为:"<<cn1<<";;2的个数为:"<<cn2<<";;3的个数为:"<<cn3<<endl;
        cout<<"总数为:"<<cn0+cn1+cn2+cn3<<endl;
        return 0;
    }

         0-3  之间选择随机数    事实是相同的   

    二.系统抽样  

      当总体数量非常大的时候,样本容量就不宜太小,采用简单随机抽样,就显得费事,可将总体分成均衡的若干部分,然后按照预先指定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样。

      案例1:高一学生期末考试数学成绩统计,从参加考试的15000名学生的数学成绩中抽取容量为150的样本。对全体学生的数学成绩进行编号。号码从1-15000。

    样本容量为150,总体容量为15000  这样两个的比例为150:15000=1:100。     

      将总体平均分成150个部分,其中每个部分包含100个号码;在1-100中抽取一个号码假设为56,则第二个数为156,以后的一次递增100 即256、356...

      直到取得150个号码为止:序列为:56,156,256,356,456,....

      得到150个号码学生的成绩为样本

      

      从元素个数为N的总体中抽取容量为n的样本,如果总体容量能被样本容量整除,设定k=N/n,先从数字1到k中随机地抽取一个数s作为起始数,然后顺次抽取第s+k,s+2k,...,s+(n-1)k个数,这样就得到容量为n的样本。如果总体容量不能被样本容量整除。可随机地从总体中剔除余数,然后再按照系统抽样方法进行抽样。

      进行大规模的抽样调查时,系统抽样比简单随机抽样要方便得多,因而应用的范围很广。由于抽样的间隔相等,因此系统抽样也被称为等距抽样

    练习A:1563个产品中   抽取15件产品做检测    给出系统抽样方案

      1.1-1563编号        1563/15=104.2   四舍五入  取104

      2.1-104中取1个数字  假设为87    之后取87+1*104=191        再之后是87+2*104=295     再之后是87+3*104   等等  一直取15个数

      3.此15个数字组成样本空间

    练习B:

      总数为365天  

      编号从1-365

      365/52=7.01        约等于7

      所以1-7中任选一个数字  假设为5   则第2个数为5+7=12     第3个数为5+14=19     第4个数为5+3*7=26    一直取满52个数。

      这52个数字组成样本空间。

      案例代码:

      

    //系统抽样     生成52个随机数

    #include <iostream>
    #include <cstdlib>
    #include <ctime>

    #define random(a,b) (rand()%(b-a+1)+a)

    using namespace std;

    int main()
    {
    srand((unsigned)time(NULL)); //生成种子
    int number=365;
    int parts=52;
    int n=number/parts;
    int c=0;
    int a=random(1,7);

    for(int i=0;i<52;i++)
    {
    cout<<a+c*n<<endl;
    c++;
    }
    // cout<<n<<" ";

    return 0;
    }

    分层抽样

      当总体由明显差别的几部分组成时,为了使抽取的样本更好地反映总体的情况,常常采取分层抽样,将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在总体中所占比例进行简单随机抽样或系统抽样,这种抽样方法叫做分层抽样

      案例:某高中900名学生  考察体重,抽取45名学生的体重组成的样本,因为各个年级的学生随着年龄的增长体重不同,所以分三层来抽取

      高一学生共400名;高二学生300名;高三学生200名; 

      样本容量与总体容量的比为45:900=1:20

      所以45=900*1/20=(400+300+200)*1/20=400*1/20+300*1/20+200*1/20=20+15+10=45

      所以高一,高二,高三3个层面上取的学生数分别为:20     15     10

      然后再分别对各层进行简单随机抽样;分层的优点是  具有较强的代表性   而且在各层抽样时可以灵活地选用不同的抽样法

    练习1:

      500名学生  喜欢数学的学生占30%,不喜欢数学的占40%,介于两者之间的学生占30%,为了考查学生的其中考试的数学成绩,如何用分层抽样来抽取一个容量为50个样本。

      成绩高的(喜欢数学)  500*30%=150

      成绩中等的       500*30%=150

      成绩低的        500*40%=200

      样本为50:总体500=1:10

      所以分层抽取的数量为:150/10=15;150/10=15;200/10=20    

      分别为成绩高的      成绩中等的     成绩低的     总数为50

      然后再分别对各层进行简单随机抽样   

    练习2:某公司500人,其中不到35的125人,35-49的280人      50岁以上的95人   为了调查员工的身体健康状况 样本为100名 分层抽取的方法

      100/500=1/5

      35岁的抽取      125/5=25人  再简单随机抽取

      35-49岁的抽取   280/5=56人  

      50岁以上       95/5=19人  

    练习3:饮食习惯   1500为总数,抽取200名进行调查

      南方人500名      北方人800名    西部地区200名

      方法:

      200/1500=2/15

      南方人抽样为500*2/15=66.6=67人

      北方人抽样为800*2/15=106人

      西部地区的人抽样为200*2/15=26.6=27人

      合计共200人

    练习B:

      12000 分别来自四个城区   其中东城区2400人,西城区4605人,南城区3795人,北城区1200人

      从中抽取60人

      方法如下:

      1.计算比例

        60/12000=1/200

      2.分别计算

        2400/200=12

        4605/200=23

        3795/200=19

        1200/200=6

      合计12+23+19+6=60

      3.然后分别对四个城区进行简单的随机抽样 统计

    上题中的程序代码:

    1.simplesample.h    头文件

    class randsample
    {
    public:
    randsample();
    randsample(int _s,int _n);
    void sample();
    void print();
    private:
    int num;//样本容量
    int sum;//总量
    int samples[];
    };

     2.simplesample_class_implement.cpp

    //simplesample类的实现

    //implement simple_sample

    #include <iostream>
    #include <ctime>
    #include <cstdlib>
    #include "simplesample.h" //用户自定义的文件

    #define random(a,b) (rand()%(b-a+1)+a) //宏定义

    using namespace std;

    randsample::randsample()
    {

    cout<<"default"<<" ";
    sum=0;
    num=0;
    samples[0]={0};
    }

    randsample::randsample(int _s,int _n)//形参为总量和样本数量
    {
    sum=_s;
    num=_n;

    }
    void randsample::print()
    {
    int count=0;
    cout<<"样品容量为:"<<num<<" ";
    cout<<"总量为:"<<sum<<" ";
    sample();
    cout<<"抽取的样品编号分别为: ";
    for(int i=0;i<num;i++)
    {
    count++;
    cout<<"第"<<i+1<<"个:"<<samples[i]<<" ";
    if(count%5==0)
    cout<<" ";
    }
    }
    void randsample::sample()
    {
    for(int i=0;i<num;i++)
    samples[i]=random(0,sum);
    }
    int main()
    {
    srand((unsigned)time(NULL));//产生随机数种子,如果不设置 则rand()值始终为1 则每次生成的随机数都是相同的
    randsample dongcheng(2400,12);
    dongcheng.print();
    cout<<" ";
    cout<<" ";
    randsample xicheng(4605,23);
    xicheng.print();
    cout<<" ";
    cout<<" ";
    randsample nancheng(3795,19);
    nancheng.print();
    cout<<" ";
    cout<<" ";
    randsample beicheng(1200,6);
    beicheng.print();
    cout<<" ";
    cout<<" ";
    return 0;
    }

    2.1.4  数据的收藏

       在实际统计时  要确定调查的目的、对象   即统计调查要解决的问题和需要调查的总体;

      要确定好调查的项目,也就是要统计的变量,接下来就可以开始收集数据了

      1.试验

      能够直接获得样本数据     例如投骰子  

      2.查阅资料  

      查阅理念文献  统计年鉴等    例如  全国历次人口普查的数据

      3.设计调查问卷

      由一组有目的,有系统,有顺序的题目组成。

      问题要具体,有针对性   

      避免一般性或者不具体的问题

      语言简单、准确、含义清楚  避免出现有歧义或意思含混的句子

      不能出现引导受调查者答题倾向的语句

     

    汇总练习题

      习题2-1_A

      1.某地10000名高一学生的体重   抽取200名雪深更调查

        总体:10000名学生的体重情况

        个体:每名学生的体重

        样本:是10000名中抽取的200名学生的体重情况

        总体容量:10000

        样本容量:200

      2.编号为1-100的100道题中随机抽取20道题组成考卷

        总体:100

        编号1-100

        样本为20

        不放回地每次抽取1个标签  纸条   组成样本 直到抽出20个纸条

      3.590件货物   从中选出50件货物    用随机数表示法给出抽样方案

        数字00100-99999   为范围

        #define  random(a,b)  (rand()%(b-a+1)+a)

        random(100,99999)

        取得出的随机数   取每组数字的高三位  大于590的跳过

        int num[50]={0};

        int count=0;

        for(int i=0;i<50;i++)

        {

          num[i]=random(0,999);

          cout<<num[i];

          count++;

          if(count%7==0)

          cout<<" ";

        }

      4. 10000人     编号0-9999   从这些游客当中随机选出10名幸运游客   用系统抽样的方式给出游客的编号    等距离抽取

         k=10000/10=1000;

         int n=random(0,1000);

         int m[10]={0};

         m[0]=n;

          cout<<"第1次抽取的样本为:"<<m[0]<<" ";

         for(int i=1;i<10;i++)

         {

          m[i]=n+i*k;

          cout<<"第"<<i+1<<"次抽取的样本为:"<<m[i]<<" ";

         }

          

    代码示例:

    //习题4 统计与抽样
    #include <iostream>
    #include <ctime>
    #include <cstdlib>
    #define random(a,b) (rand()%(b-a+1)+a)
    using namespace std;
    int main()
    {
    srand((unsigned)time(NULL));
    cout<<"请输入总体容量:"<<endl;
    int n1;
    cin>>n1;
    cout<<"请输入样本容量:"<<endl;
    int n2;
    cin>>n2;
    int k=n1/n2;
    int n=random(0,k);//calculate
    int m[n2]={0};//initial set
    m[0]=n;
    cout<<"the first sample:"<<m[0]<<" ";
    for(int i=1;i<n2;i++)
    {
    m[i]=n+i*k;
    cout<<i+1<<"th sample:"<<m[i]<<" ";//输出所有的样品值
    }
    return 0;
    }

    5.

    //simplesample 声明
    /* 仅声明
    */


    class randsample
    {
    public:
    randsample();
    randsample(int _s,int _n);
    void sample();
    void print();
    private:
    int num;//样本容量
    int sum;//总量
    int samples[];
    };

    class dividefun
    {
    public:
    dividefun();//constructor default
    dividefun(int _num,int _sum_samplenum); //初始化分层总体数组
    void calculate();//计算分层样本的容量 并存入对应数组中
    private:
    int sample_num[]; //用来存储各个分层的样本容量的数组
    int sum_num[]; //用来存储各个分层的总体容量的数组
    int dividenum;//层数
    int sum_samplenum;
    };

    //simplesample类的实现    未完成

    //implement simple_sample

    #include <iostream>
    #include <ctime>
    #include <cstdlib>
    #include "simplesample.h" //用户自定义的文件

    #define random(a,b) (rand()%(b-a+1)+a) //宏定义

    using namespace std;

    randsample::randsample()
    {
    cout<<"default"<<" ";
    sum=0;
    num=0;
    samples[0]={0};
    }
    randsample::randsample(int _s,int _n)//形参为总量和样本数量
    {
    sum=_s;
    num=_n;
    }
    void randsample::print()
    {
    int count=0;
    cout<<"样品容量为:"<<num<<" ";
    cout<<"总量为:"<<sum<<" ";
    sample();
    cout<<"抽取的样品编号分别为: ";
    for(int i=0;i<num;i++)
    {
    count++;
    cout<<"第"<<i+1<<"个:"<<samples[i]<<" ";
    if(count%5==0)
    cout<<" ";
    }
    }
    void randsample::sample()
    {
    for(int i=0;i<num;i++)
    samples[i]=random(0,sum);
    }


    //class dividefun implement

    dividefun::dividefun(){
    cout<<"default"<<endl;
    sum_num[0]={0};
    sample_num[0]={0};
    dividenum=0;
    }
    dividefun::dividefun(int _num,int _sum_samplenum){
    //int num=0;
    sum_samplenum=_sum_samplenum;
    dividenum=_num;
    cout<<"请输入"<<dividenum<<"个数字:"<<endl;
    for(int i=0;i<_num;i++)
    {
    cin>>sum_num[i];//初始化分层总量数组
    }
    }

    void dividefun::calculate()//计算
    {
    int sum;
    int k;
    if(dividenum==0)
    exit(1);
    else
    {
    //计算总体抽样的比例
    for(int i=0;i<dividenum;i++)
    sum+=sum_num[i];
    k=sum_samplenum/sum; //计算比例
    for(int i=0;i<dividenum;i++)
    {
    sample_num[i]=sum_num[i]*k;//初始化分层样本数组
    }
    }
    }

    int main()
    {
    srand((unsigned)time(NULL));//产生随机数种子,如果不设置 则rand()值始终为1 则每次生成的随机数都是相同的
    randsample dongcheng(2400,12);
    dongcheng.print();
    cout<<" ";
    cout<<" ";
    randsample xicheng(4605,23);
    xicheng.print();
    cout<<" ";
    cout<<" ";
    randsample nancheng(3795,19);
    nancheng.print();
    cout<<" ";
    cout<<" ";
    randsample beicheng(1200,6);
    beicheng.print();
    cout<<" ";
    cout<<" ";
    return 0;
    }

    2.2用样本估计总体

      随机抽样的方法在总体中抽取样本   得到一组数据    可以用样本的频率分布估计总体的分布,可以用样本的数字特征(如平均数、标准差)估计总体的数字特征。

    2.2.1用样本的频率分布估计总体的分布

      将大量的数据样本,形成频数分布或者频率分布  可以比较清楚地看出样本数据的特征,从而估计总体的分布的情况。

      制作频率分布表、频率分布直方图

      1.计算极差

       极差是最大值与最小值的差   反映了一组数据变化的幅度  又叫全距

         将样本数据存入数组   ,设定temp临时值

       求出数组中的最大值==》max

       求出数组中的最小值==》min

       极差=max-min

      2.决定组数与组距

      样本数据有100个,可以分成8-12组   这里取11组   假设极差为0.32

      所以  组距=极差/组数=0.32/11=0.03

      3.决定分点

      将第一组的起点定位25.235     组距为0.03    这样所分的11组分别是

      1.       25.235~(25.235+0.03=25.265)

         2.  25.265~25.295

      ...

      11.  25.535-25.565

      极差=最大-最小=25.565-25.235=0.33(约)

       4.列频率分布表

       对落在各个小组内数据的个数进行累计,这个累计数叫做各个小组的频数,各个小组的频数除以样本容量,得各小组的频率。

      求各小组频数的算法

      第一步:设B(j) 为落在第j个小组内的数据个数,且B(j)=0(j=1,2,...,11);     B为分组的数组

      第二步:逐一判断A(i)(i=1,2,...,100)落入哪一个小组,若落入第j个小组,则B(j)=B(j)+1  A数组为样本数据

      频率分布图如下:

      

      第三步  绘制频率分布直方图

        在直角坐标系中,用横轴表示产品内径尺寸,纵轴表示频率与组距的比值,得到频率分布直方图。

        

         在图中可以看出:

          小长方形面积=组距*频率/组距=频率

          各个小长方形的面积等于相应各组的频率,所有长方形面积之和等于1

        优等品所占比例,可以统计出内径尺寸在区间25.325~25.475内的个体数在样本容量中所占的比例,也就是它的频率。

        0.12+0.18+0.25+0.16+0.13=0.84

        可以估算优等品比例为84%

        频率分布折线图   将上图中的各个长方形上边的重点用线段连接起来  就得到频率分布折线图

         样本容量不断增大,分组的组距不断缩小,则频率分布直方图实际上越来越接近于总体的分布,它可以用一条y=f(x)来描绘

        这条光滑的曲线就叫做总体密度曲线。

         总体密度曲线精确地反映了一个总体在各个区域内取值的规律,产品尺寸落在(a,b)内的百分率就是图中带斜线部分的面积。

        

         常用的统计图表  还有茎叶图

         案例:某赛季甲,乙两名篮球运动员每场比赛的得分情况如下:

        甲得分:12,15,24,25,......

        乙得分:8,13,14,16,23...

        

         中间的主干(茎)表示得分的十位上的数字     外面的表示各位上的数字

        例如346就代表 13      14    16   三个得分

        左边的为甲的得分               右边的为乙的得分

        优点是没有原始信息的丢失

        

    练习A

      1.一批灯泡中抽取50只寿命测试

        

     2.2.2  用样本的数字特征估计总体的数字特征

      通常往往不需要了解总体的分布形态,而是更加关心总体的某一数字特征。

        例如灯泡的寿命,了解一批灯泡的平均使用寿命。

      把这批灯泡寿命看做总体,从中随机取出若干个个体作为样本,算出样本的数字特征,用样本的数字特征(如平均数)来估计总体的数字特征

      1.用样本的平均数估计总体平均数

      2.用样本标准差估计总体标准差

        数据的离散程度可以用极差、方差或标准差来描述。

        样本方差描述了一组数据围绕平均数波动的大小     样本方差的算术平方根。

        

         极差为最大值减最小值

         方差的平方根为样本的标准差

         例5  甲乙 射击比赛

        

    #include <iostream>
    #include <math.h>
    
    using namespace std;
    
    float bzc(int * group,int n,float &average);
    
    int main()
    {
        int A[]={7,8,6,8,6,5,9,10,7,4};
        int B[]={9,5,7,8,7,6,8,6,7,7};
        int sum=0;
        float Baverage,Aaverage;
        float Abzc,Bbzc;
        Abzc=bzc(A,10,Aaverage);
        Bbzc=bzc(B,10,Baverage);
        cout<<Aaverage<<":::::"<<Baverage<<endl;
        cout<<Bbzc<<"::::::"<<Abzc<<endl;
        return 0;
    }
    float bzc(int * group,int n,float &average)
    {
        int C[n];
        int sum=0;
        for(int i=0;i<n;i++)
        {
            sum+=group[i];
        }
        average=sum/n;
        for(int i=0;i<n;i++)
        {
            C[i]=group[i]-average;
            C[i]*=C[i];
        }
        sum=0;
        for(int i=0;i<n;i++)
        {
            sum+=C[i];
        }
        float bzc=sqrt(sum/n);
        return bzc;
    }

    2.3变量的相关性

      2.3.1  变量间的相关关系

      一类是确定性的函数关系       例如边长与面积   正方形

      另一类是有关系,但是并不是类似函数在的那种确定性       而是随机的   例如人的身高和体重

      

      散点图  :y随x的增大而增大    这种相关性叫做正相关      反之  叫做负相关

    2.3.2  两个变量的线性相关

      6天 热茶杯数与当天天气温度的对比图表

      

       近似的直线,图a为连接两个端点      图b为让这些点位于直线的上下的数目相等,

       根据不同的标准分配的      找出最佳的近似直线  (最优拟合直线)

       假设2-11 最标准,记   y'=a+bx ..........1       此时y'是为了区分Y实际的y值,

      当x(i=1,2,3...6)时,Y的相应观察值为yi,    而直线上对应的xi的纵坐标是y'i=a+bxi       

        1式叫做Y对x的回归直线方程,b叫做回归系数

              确定方程    只要确定a与回归系数b即可。

      如何证明最小二乘法中  a和b的公式    ?????

       

     

    习题:

      1.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,个体a前两次未被抽到,第三次被抽到的概率为______

        答:第一次没有抽到的概率是9/10,第一次没有抽到且第二次也没有抽到的概率是9/10*8/9

        第一次  第二次没抽到且第三次抽到的概率是9/10   *8/9   *1/10=1/10

       特点:

        1.简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个个体被抽到的概率为1/N(N是变化的);

         在整个抽样过程中各个个体被抽到的概率为n/N;

        2.逐个抽取,且各个个体被抽到的概率相等。

        3.不放回抽样;逐个地进行抽取;它是一种等概率抽样

      

      

  • 相关阅读:
    jforum二次开发教程
    gitPermission denied (publickey).
    用keytool创建Keystore和Trustsotre文件只需五步
    导入数据库时报错1067 – Invalid default value for ‘字段名’
    WordPress用户角色及其权限管理编辑插件:User Role Editor汉化版
    http://blog.csdn.net/wh211212/article/details/53005321
    centos 安装 mysql
    卸载apache服务
    Cordova插件相关常用命令
    UI 交互
  • 原文地址:https://www.cnblogs.com/dongguolei/p/9913850.html
Copyright © 2011-2022 走看看