zoukankan      html  css  js  c++  java
  • HDU1081 To The Max 求子矩阵最大和

    To The Max

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5023    Accepted Submission(s): 2384


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     


    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     


    Output
    Output the sum of the maximal sub-rectangle.
     


    Sample Input
    4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
     


    Sample Output
    15
     1 #include<stdio.h>
     2 #include<string.h>
     3 int a[101][101],max[101];
     4 int main()
     5 {
     6     int maxsum,r,c,m,n,i,j;
     7     while(scanf("%d",&n)!=EOF)
     8     {
     9         for(i=1;i<=n;++i)
    10             for(j=1;j<=n;++j)
    11             {
    12                 scanf("%d",&a[i][j]);
    13                 a[i][j]+=a[i-1][j];                                    
    14             }
    15         maxsum=a[1][1];
    16         for(i=0;i<n;++i)//注意这里技巧,从零开始;
    17         {
    18             for(j=i+1;j<=n;++j)
    19             {
    20                 memset(max,0,sizeof(max));
    21                 for(m=1;m<=n;++m)
    22                 {
    23                     if(max[m-1]>=0)
    24                         max[m]=max[m-1]+a[j][m]-a[i][m];//a[j][m]-a[i][m]即为第m列中第i+1行到第j行之和
    25                     else
    26                         max[m]=a[j][m]-a[i][m];
    27                     if(maxsum<max[m])
    28                         maxsum=max[m];
    29                 }
    30             }
    31         }
    32         printf("%d\n",maxsum);
    33     }
    34     return 0;
    35 }

     

    功不成,身已退
  • 相关阅读:
    svg
    vuex的模块
    es6的新增方法和es5数组的一些方法
    vue的响应规则
    简单的解构赋值
    vuex的四种状态
    indexDB
    token验证
    C# 委托与事件的DEMO
    WPF MVVM 键盘按键事件绑定
  • 原文地址:https://www.cnblogs.com/dongsheng/p/2534496.html
Copyright © 2011-2022 走看看