Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7241 | Accepted: 5131 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
这题完全套用的是 一般的快速幂的做法,只不过改成矩阵乘法后,为了在做矩阵乘法过程中不会影响结果值,
之间要用中间变量,代码写的很难看 (没有想到可以用结构体对二维数组进行封装,可以直接返回结构体类型的数据),
不过还是 0ms AC。
1 #include <cstdio> 2 #include <iostream> 3 4 using namespace std; 5 6 const int MOD = 10000; 7 8 int fast_mod(int n) // 求 (t^n)%MOD 9 { 10 int t[2][2] = {1, 1, 1, 0}; 11 int ans[2][2] = {1, 0, 0, 1}; // 初始化为单位矩阵 12 int tmp[2][2]; //自始至终都作为矩阵乘法中的中间变量 13 14 while(n) 15 { 16 if(n & 1) //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t 17 { 18 for(int i = 0; i < 2; ++i) 19 for(int j = 0; j < 2; ++j) 20 tmp[i][j] = ans[i][j]; 21 ans[0][0] = ans[1][1] = ans[0][1] = ans[1][0] = 0; // 注意这里要都赋值成 0 22 23 for(int i = 0; i < 2; ++i) // 矩阵乘法 24 { 25 for(int j = 0; j < 2; ++j) 26 { 27 for(int k = 0; k < 2; ++k) 28 ans[i][j] = (ans[i][j] + tmp[i][k] * t[k][j]) % MOD; 29 } 30 } 31 } 32 33 // 下边要实现 t *= t 的操作,同样要先将t赋值给中间变量 tmp ,t清零,之后 t = tmp* tmp 34 for(int i = 0; i < 2; ++i) 35 for(int j = 0; j < 2; ++j) 36 tmp[i][j] = t[i][j]; 37 t[0][0] = t[1][1] = 0; 38 t[0][1] = t[1][0] = 0; 39 for(int i = 0; i < 2; ++i) 40 { 41 for(int j = 0; j < 2; ++j) 42 { 43 for(int k = 0; k < 2; ++k) 44 t[i][j] = (t[i][j] + tmp[i][k] * tmp[k][j]) % MOD; 45 } 46 } 47 48 n >>= 1; 49 } 50 return ans[0][1]; 51 } 52 53 int main() 54 { 55 int n; 56 while(scanf("%d", &n) && n != -1) 57 { 58 printf("%d\n", fast_mod(n)); 59 } 60 return 0; 61 }
代码二:用结构体封装矩阵乘法后,代码看着清晰多了
1 #include <cstdio> 2 #include <iostream> 3 4 using namespace std; 5 6 const int MOD = 10000; 7 8 struct matrix 9 { 10 int m[2][2]; 11 }ans, base; 12 13 matrix multi(matrix a, matrix b) 14 { 15 matrix tmp; 16 for(int i = 0; i < 2; ++i) 17 { 18 for(int j = 0; j < 2; ++j) 19 { 20 tmp.m[i][j] = 0; 21 for(int k = 0; k < 2; ++k) 22 tmp.m[i][j] = (tmp.m[i][j] + a.m[i][k] * b.m[k][j]) % MOD; 23 } 24 } 25 return tmp; 26 } 27 int fast_mod(int n) // 求矩阵 base 的 n 次幂 28 { 29 base.m[0][0] = base.m[0][1] = base.m[1][0] = 1; 30 base.m[1][1] = 0; 31 ans.m[0][0] = ans.m[1][1] = 1; // ans 初始化为单位矩阵 32 ans.m[0][1] = ans.m[1][0] = 0; 33 while(n) 34 { 35 if(n & 1) //实现 ans *= t; 其中要先把 ans赋值给 tmp,然后用 ans = tmp * t 36 { 37 ans = multi(ans, base); 38 } 39 base = multi(base, base); 40 n >>= 1; 41 } 42 return ans.m[0][1]; 43 } 44 45 int main() 46 { 47 int n; 48 while(scanf("%d", &n) && n != -1) 49 { 50 printf("%d\n", fast_mod(n)); 51 } 52 return 0; 53 }