zoukankan      html  css  js  c++  java
  • Sequence Model-week3编程题1-Neural Machine Translation with Attention

    1. Neural Machine Translation

    • 下面将构建一个神经机器翻译(NMT)模型,将人类可读日期 ("25th of June, 2009") 转换为机器可读日期 ("2009-06-25").

    • 使用 attention model.

    from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply
    from keras.layers import RepeatVector, Dense, Activation, Lambda
    from keras.optimizers import Adam
    from keras.utils import to_categorical
    from keras.models import load_model, Model
    import keras.backend as K
    import numpy as np
    
    from faker import Faker
    import random
    from tqdm import tqdm
    from babel.dates import format_date
    from nmt_utils import *
    import matplotlib.pyplot as plt
    %matplotlib inline
    

    2. 人类可读日期转机器可读日期(Translating human readable dates into machine readable dates)

    • 你将在这里构建的模型可以用于从一种语言翻译到另一种语言,例如从英语翻译到印地语。

    • 然而,语言翻译需要大量的数据集,通常需要几天的GPU训练。

    • 我们将执行一个更简单的 “日期翻译” 任务。

    • 该网络将输入以各种可能的格式编写的日期(e.g. "the 29th of August 1958", "03/30/1968", "24 JUNE 1987")

    • 该网络将翻译他们为标准化的机器可读日期 (e.g. "1958-08-29", "1968-03-30", "1987-06-24").(YYYY-MM-DD)

    2.1 Dataset

    我们将在10,000个人类可读日期 及其 等效、标准化、机器可读日期的数据集上对模型进行培训。 加载数据集:

    m = 10000
    dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m)
    
    print(dataset[:10])
    
    print(human_vocab, len(human_vocab))
    print(machine_vocab, len(machine_vocab))
    
    [('tuesday january 31 2006', '2006-01-31'), ('20 oct 1986', '1986-10-20'), ('25 february 2008', '2008-02-25'), ('sunday november 11 1984', '1984-11-11'), ('20.06.72', '1972-06-20'), ('august 9 1983', '1983-08-09'), ('march 30 1993', '1993-03-30'), ('10 jun 2017', '2017-06-10'), ('december 21 2001', '2001-12-21'), ('monday october 11 1999', '1999-10-11')]
    {' ': 0, '.': 1, '/': 2, '0': 3, '1': 4, '2': 5, '3': 6, '4': 7, '5': 8, '6': 9, '7': 10, '8': 11, '9': 12, 'a': 13, 'b': 14, 'c': 15, 'd': 16, 'e': 17, 'f': 18, 'g': 19, 'h': 20, 'i': 21, 'j': 22, 'l': 23, 'm': 24, 'n': 25, 'o': 26, 'p': 27, 'r': 28, 's': 29, 't': 30, 'u': 31, 'v': 32, 'w': 33, 'y': 34, '<unk>': 35, '<pad>': 36} 37
    {'-': 0, '0': 1, '1': 2, '2': 3, '3': 4, '4': 5, '5': 6, '6': 7, '7': 8, '8': 9, '9': 10} 11
    
    • dataset: 一个元组列表 (人类可读日期, 机器可读日期)。

    • human_vocab: 一个python字典,将人类可读日期中使用的所有字符 映射到 整数值索引。

    • machine_vocab: 一个python字典,将机器可读日期中使用的所有字符 映射到 整数值索引。这些索引不一定与 human_vocab 的索引一致。

    • inv_machine_vocab: machine_vocab的逆字典,从索引到字符的映射。

    2.2 预处理数据

    • 设置 Tx=30

      • 我们假设 Tx 是人类可读日期的最大长度。

      • 如果我们得到更长的输入,我们将不得不截断(truncate)它。

    • 设置 Ty=10

      • "YYYY-MM-DD" 是 10 characters 长度.
    Tx = 30
    Ty = 10
    X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty)
    
    print("X.shape:", X.shape)
    print("Y.shape:", Y.shape)
    print("Xoh.shape:", Xoh.shape)
    print("Yoh.shape:", Yoh.shape)
    

    X.shape: (10000, 30)
    Y.shape: (10000, 10)
    Xoh.shape: (10000, 30, 37)
    Yoh.shape: (10000, 10, 11)

    你现在有:

    • X: 训练集中 人类可读日期 的处理版本.

      • 其中每个字符都被它在 human_vocab 中映射该字符的索引替换. 89%

      • 每个日期都使用特殊字符(< pad >)进一步填充,确保 T_x 长度.

      • X.shape = (m, Tx) where m is the number of training examples in a batch.

    • Y: 训练集中 机器可读日期 的处理版本

      • 其中每个字符都被它在 machine_vocab 中映射的索引替换.

      • Y.shape = (m, Ty).

    • Xoh: X 的 one-hot版本

      • one-hot 中条目 “1” 的索引被映射到在human_vocab中对应字符. (如果 index is 2, one-hot 版本:[0,0,1,0,0,...,0]

      • Xoh.shape = (m, Tx, len(human_vocab))

    • Yoh: Y 的 one-hot版本

      • one-hot 中条目 “1” 的索引被映射到在machine_vocab中对应字符.

      • Yoh.shape = (m, Tx, len(machine_vocab)).

      • len(machine_vocab) = 11 由于有 10 数字(0-9) 和 - 符号.

    index = 0
    print("Source date:", dataset[index][0])
    print("Target date:", dataset[index][1])
    print()
    print("Source after preprocessing (indices):", X[index])
    print("Target after preprocessing (indices):", Y[index])
    print()
    print("Source after preprocessing (one-hot):", Xoh[index])   # 每行是一个T_t的输出,输出的是对应相应字符的一个one-hot向量.
    print("Target after preprocessing (one-hot):", Yoh[index])
    
    Source date: tuesday january 31 2006
    Target date: 2006-01-31
    
    Source after preprocessing (indices): [30 31 17 29 16 13 34  0 22 13 25 31 13 28 34  0  6  4  0  5  3  3  9 36 36
     36 36 36 36 36]
    Target after preprocessing (indices): [3 1 1 7 0 1 2 0 4 2]
    
    Source after preprocessing (one-hot): [[ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
     [ 0.  0.  0. ...,  0.  0.  0.]
     ..., 
     [ 0.  0.  0. ...,  0.  0.  1.]
     [ 0.  0.  0. ...,  0.  0.  1.]
     [ 0.  0.  0. ...,  0.  0.  1.]]
    Target after preprocessing (one-hot): [[ 0.  0.  0.  1.  0.  0.  0.  0.  0.  0.  0.]
     [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
     [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
     [ 0.  0.  0.  0.  0.  0.  0.  1.  0.  0.  0.]
     [ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
     [ 0.  1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
     [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.]
     [ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
     [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.  0.]
     [ 0.  0.  1.  0.  0.  0.  0.  0.  0.  0.  0.]]
    

    3. Neural machine translation with attention

    • 如果你必须把一本书的段落从法语翻译成英语,你就不会读整个段落,然后关闭这本书并翻译。

    • 即使在翻译过程中,你也会阅读/重读,并专注于法语段落中与你正在写的英语部分相对应的部分

    • 注意机制告诉神经机器翻译模型,它应该注意任何步骤。

    3.1 Attention mechanism

    工作原理:

    • 左图显示了 attention model.

    • 右图显示了 一个 "attention" 步骤 用来计算 attention 变量 (alpha^{langle t, t' angle}).

    • Attention 变量 (alpha^{langle t, t' angle}) 用于计算输出中每个时间步((t=1, ldots, T_y)) 的上下文变量 (context^{langle t angle}) ((C^{langle t angle})).



    **Figure 1**: Neural machine translation with attention

    以下是您可能要注意的模型的一些属性:

    Pre-attention and Post-attention LSTMs 在the attention mechanism 两边

    • 模型中有两个单独的 LSTM(见左图): pre-attention and post-attention LSTMs.

    • Pre-attention Bi-LSTM 在图片底部 是 一个 Bi-directional LSTM(双向LSTM) 在 attention mechanism 之前.

      • The attention mechanism 是左图中间的部分(Attention).

      • The pre-attention Bi-LSTM 穿过 (T_x) time steps

    • Post-attention LSTM: 在图片顶部 在 attention mechanism 之后.

      • The post-attention LSTM 穿过 (T_y) time steps.
    • The post-attention LSTM 通过 hidden state (s^{langle t angle}) 和 cell state (c^{langle t angle}) 从一个time step 到 另一个time step.

    An LSTM 有一个 hidden state 和 cell state

    • 对于post-attention sequence model 我们仅使用了基本的 RNN

      • 这意味着,RNN捕获的the state 只输出 hidden state (s^{langle t angle}).
    • 这个任务中, 我们使用一个LSTM 代替基本RNN.

      • 因此,LSTM 有 hidden state (s^{langle t angle}), 也有 cell state (c^{langle t angle}).

    每个time step 不使用前一个time step的预测

    • 与之前的文本生成示例(例如第1周的Dinosaurus)不同, 在此模型中, post-activation LSTM 在时间 (t) 不会用具体生成的 预测 (y^{langle t-1 angle}) 作为输入.

    • post-attention LSTM 在 time 't' 只需要 hidden state (s^{langle t angle}) 和 cell state (c^{langle t angle}) 作为输入.

    • 我们以这种方式设计了模型,因为(与相邻字符高度相关的语言生成不同) 在YYYY-MM-DD日期中, 前一个字符与下一个字符之间的依赖性不强。

    Concatenation(连接) of hidden states((a^{langle t angle})) 来自 前向(forward) 和 后向(backward) pre-attention LSTMs

    • (overrightarrow{a}^{langle t angle}): hidden state of the forward-direction, pre-attention LSTM.

    • (overleftarrow{a}^{langle t angle}): hidden state of the backward-direction, pre-attention LSTM.

    • (a^{langle t angle} = [overrightarrow{a}^{langle t angle}, overleftarrow{a}^{langle t angle}]): the concatenation of the activations of both the forward-direction (overrightarrow{a}^{langle t angle}) and backward-directions (overleftarrow{a}^{langle t angle}) of the pre-attention Bi-LSTM.

    Computing "energies" (e^{langle t, t' angle}) as a function of (s^{langle t-1 angle}) and (a^{langle t' angle})

    • Recall in the lesson videos "Attention Model", at time 6:45 to 8:16, the definition of "e" as a function of (s^{langle t-1 angle}) and (a^{langle t angle}).

      • "e" is called the "energies" variable.

      • (s^{langle t-1 angle}) is the hidden state of the post-attention LSTM

      • (a^{langle t' angle}) is the hidden state of the pre-attention LSTM.

      • (s^{langle t-1 angle}) and (a^{langle t angle}) are fed into a simple neural network, which learns the function to output (e^{langle t, t' angle}).

      • (e^{langle t, t' angle}) is then used when computing the attention (a^{langle t, t' angle}) that (y^{langle t angle}) should pay to (a^{langle t' angle}).

    • 右图使用了一个 RepeatVector node to copy (s^{langle t-1 angle})'s value (T_x) times.

    • 然后,它使用 Concatenation 来连接(concatenate) (s^{langle t-1 angle})(a^{langle t angle}).

    • The concatenation of (s^{langle t-1 angle}) and (a^{langle t angle}) is fed into a "Dense" layer, 用来计算 (e^{langle t, t' angle}).

    • (e^{langle t, t' angle}) is then passed through a softmax to compute (alpha^{langle t, t' angle}).

    • 变量 (e^{langle t, t' angle})图中没有显示给出, 但是 (e^{langle t, t' angle}) 在 the Dense layer 和 the Softmax layer 之间(图右).

    • 将解释如何在Keras使用 RepeatVector and Concatenation.


    3.2 Implement Details

    实现 neural translator,你将实现两个函数:one_step_attention() and model().

    3.21 one_step_attention

    • The inputs to the one_step_attention at time step (t) are:

      • ([a^{<1>},a^{<2>}, ..., a^{<T_x>}]): all hidden states of the pre-attention Bi-LSTM.

      • (s^{<t-1>}): the previous hidden state of the post-attention LSTM.

    • one_step_attention computes:

      • ([alpha^{<t,1>},alpha^{<t,2>}, ..., alpha^{<t,T_x>}]): the attention weights

      • (context^{ langle t angle }): the context vector:

    [context^{<t>} = sum_{t' = 1}^{T_x} alpha^{<t,t'>}a^{<t'>} ag{1} ]

    Clarifying 'context' and 'c'
    • the context 用 (c^{langle t angle}) 来表示.

    • 这个任务中, 我们将 the context 用 (context^{langle t angle}) 表示.

      • 这是为了避免与 the post-attention LSTM's 内部存储单元变量(internal memory cell)混淆, 该变量用 (c^{langle t angle}) 表示.

    实现 one_step_attention

    Exercise: 实现 one_step_attention().

    • 这个函数 model() 将使用for循环调用 the layers in one_step_attention() (T_y) .

    • 所有 (T_y) copies 要有相同的权重(weights).

      • 不需要每次都重新初始化权重

      • 所有 (T_y) steps 应该有共同的权重

    • 下面是如何在Keras中实现具有可共享权重的层:

      1. 定义 one_step_attention 函数之外的变量范围中的层对象。 例如,将对象定义为全局变量将有效

        • 注意,在函数 model 的范围内 定义这些变量在技术上是可行的(为了方便)
      2. 当传播输入时,调用这些对象

    • 我们已将所需图层定义为全局变量

    • 示例及文档:

    # Defined shared layers as global variables
    repeator = RepeatVector(Tx)                        # copy s^<t-1>'s value T_x times
    concatenator = Concatenate(axis=-1)                # 按行连接
    densor1 = Dense(10, activation = "tanh")
    densor2 = Dense(1, activation = "relu")
    activator = Activation(softmax, name='attention_weights') # We are using a custom softmax(axis = 1) loaded in this notebook
    dotor = Dot(axes = 1)                             # 计算 context
    
    # GRADED FUNCTION: one_step_attention
    
    def one_step_attention(a, s_prev):
        """
        Performs one step of attention: Outputs a context vector computed as a dot product of the attention weights
        "alphas" and the hidden states "a" of the Bi-LSTM.
        
        Arguments:
        a -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx, 2*n_a)
        s_prev -- previous hidden state of the (post-attention) LSTM, numpy-array of shape (m, n_s)
        
        Returns:
        context -- context vector, input of the next (post-attention) LSTM cell
        """
        
        ### START CODE HERE ###
        # Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can concatenate it with all hidden states "a" (≈ 1 line)
        s_prev = repeator(s_prev)
        # Use concatenator to concatenate a and s_prev on the last axis (≈ 1 line)
        # For grading purposes, please list 'a' first and 's_prev' second, in this order.
        concat = concatenator([a, s_prev])
        # Use densor1 to propagate concat through a small fully-connected neural network to compute the "intermediate energies" variable e. (≈1 lines)
        e = densor1(concat)
        # Use densor2 to propagate e through a small fully-connected neural network to compute the "energies" variable energies. (≈1 lines)
        energies = densor2(e)
        # Use "activator" on "energies" to compute the attention weights "alphas" (≈ 1 line)
        alphas = activator(energies)
        # Use dotor together with "alphas" and "a" to compute the context vector to be given to the next (post-attention) LSTM-cell (≈ 1 line)
        context = Dot([alphas, a])
        ### END CODE HERE ###
        
        return context
    

    3.22 model

    • 首先, model通过 Bi-LSTM 运行输入,以获得 ([a^{<1>},a^{<2>}, ..., a^{<T_x>}]).

    • 然后, model 用for循环调用 one_step_attention() (T_y) times:

      • 它将计算 context vector (context^{<t>}) 传入 the post-attention LSTM.

      • 它通过带有softmax activation的 dense layer 运行the post-attention 的输出.

      • The softmax 生成一个预测 (hat{y}^{<t>}).

    Exercise: 实现 model(),定义global layers,共享在model中使用的权重

    n_a = 32 # number of units for the pre-attention, bi-directional LSTM's hidden state 'a'
    n_s = 64 # number of units for the post-attention LSTM's hidden state "s"
    
    # Please note, this is the post attention LSTM cell.  
    # For the purposes of passing the automatic grader
    # please do not modify this global variable.  This will be corrected once the automatic grader is also updated.
    post_activation_LSTM_cell = LSTM(n_s, return_state = True) # post-attention LSTM 
    output_layer = Dense(len(machine_vocab), activation=softmax)
    

    现在您可以在 for 循环中使用这些图层 (T_y) 次来生成输出,并且他们的参数不会重新初始化。您必须执行以下步骤:

    1. 传入输入参数X 到 Bi-directional LSTM.
      • Bidirectional
      • LSTM
      • 记住,我们希望LSTM返回一个完整的序列,而不仅仅是最后一个隐藏状态。

    Sample code:

    sequence_of_hidden_states = Bidirectional(LSTM(units=..., return_sequences=...))(the_input_X)
    
    1. 迭代 for (t = 0, cdots, T_y-1):

      1. 调用 one_step_attention(),从 pre-attention bi-directional LSTM 传递 hidden states ([a^{langle 1 angle},a^{langle 2 angle}, ..., a^{ langle T_x angle}]) 的序列, 用来自 post-attention LSTM 的 previous hidden state (s^{<t-1>}) 来计算 context vector (context^{<t>}).

      2. 使用 (context^{<t>}) 作为参数传给 post-attention LSTM cell.

        • 记得传入这个LSTM以前的 hidden-state (s^{langle t-1 angle}) 和 cell-states (c^{langle t-1 angle})
        • 返回新的 hidden state (s^{<t>}) and 和 新的 cell state (c^{<t>}).

        Sample code:

        next_hidden_state, _ , next_cell_state = 
            post_activation_LSTM_cell(inputs=..., initial_state=[prev_hidden_state, prev_cell_state])
        
      3. 应用一个 dense, softmax layer 到 (s^{<t>}),获得输出
        Sample code:

        output = output_layer(inputs=...)
        
      4. 通过将输出添加到输出列表来保存

    2. 创建您的Keras模型实例

      • 它应该有三个输入:

        • X, the one-hot encoded inputs to the model, of shape ((T_{x}, humanVocabSize))

        • (s^{langle 0 angle}), the initial hidden state of the post-attention LSTM

        • (c^{langle 0 angle}), the initial cell state of the post-attention LSTM

      • The output is the list of outputs.
        Sample code

      model = Model(inputs=[...,...,...], outputs=...)
      
    # GRADED FUNCTION: model
    
    def model(Tx, Ty, n_a, n_s, human_vocab_size, machine_vocab_size):
        """
        Arguments:
        Tx -- length of the input sequence
        Ty -- length of the output sequence
        n_a -- hidden state size of the Bi-LSTM
        n_s -- hidden state size of the post-attention LSTM
        human_vocab_size -- size of the python dictionary "human_vocab"
        machine_vocab_size -- size of the python dictionary "machine_vocab"
    
        Returns:
        model -- Keras model instance
        """
        
        # Define the inputs of your model with a shape (Tx,)
        # Define s0 and c0, initial hidden state for the decoder LSTM of shape (n_s,)
        X = Input(shape=(Tx, human_vocab_size))
        s0 = Input(shape=(n_s,), name='s0')
        c0 = Input(shape=(n_s,), name='c0')
        s = s0
        c = c0
        
        # Initialize empty list of outputs
        outputs = []
        
        ### START CODE HERE ###
        
        # Step 1: Define your pre-attention Bi-LSTM. Remember to use return_sequences=True. (≈ 1 line)
        a = Bidirectional(LSTM(n_a,return_sequences=True))(X)
        
        # Step 2: Iterate for Ty steps
        for t in range(Ty):
        
            # Step 2.A: Perform one step of the attention mechanism to get back the context vector at step t (≈ 1 line)
            context = one_step_attention(a, s)
            
            # Step 2.B: Apply the post-attention LSTM cell to the "context" vector.
            # Don't forget to pass: initial_state = [hidden state, cell state] (≈ 1 line)
            s, _, c = post_activation_LSTM_cell(context, initial_state=[s, c])
            
            # Step 2.C: Apply Dense layer to the hidden state output of the post-attention LSTM (≈ 1 line)
            out = output_layer(s)
            
            # Step 2.D: Append "out" to the "outputs" list (≈ 1 line)
            outputs.append(out)
        
        # Step 3: Create model instance taking three inputs and returning the list of outputs. (≈ 1 line)
        model = Model([X, s0, c0], outputs)
        
        ### END CODE HERE ###
        
        return model
    
    model = model(Tx, Ty, n_a, n_s, len(human_vocab), len(machine_vocab))
    
    model.summary()
    
    ____________________________________________________________________________________________________
    Layer (type)                     Output Shape          Param #     Connected to                     
    ====================================================================================================
    input_6 (InputLayer)             (None, 30, 37)        0                                            
    ____________________________________________________________________________________________________
    s0 (InputLayer)                  (None, 64)            0                                            
    ____________________________________________________________________________________________________
    bidirectional_6 (Bidirectional)  (None, 30, 64)        17920       input_6[0][0]                    
    ____________________________________________________________________________________________________
    repeat_vector_1 (RepeatVector)   (None, 30, 64)        0           s0[0][0]                         
                                                                       lstm_9[0][0]                     
                                                                       lstm_9[1][0]                     
                                                                       lstm_9[2][0]                     
                                                                       lstm_9[3][0]                     
                                                                       lstm_9[4][0]                     
                                                                       lstm_9[5][0]                     
                                                                       lstm_9[6][0]                     
                                                                       lstm_9[7][0]                     
                                                                       lstm_9[8][0]                     
    ____________________________________________________________________________________________________
    concatenate_1 (Concatenate)      (None, 30, 128)       0           bidirectional_6[0][0]            
                                                                       repeat_vector_1[14][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[15][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[16][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[17][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[18][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[19][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[20][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[21][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[22][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[23][0]           
    ____________________________________________________________________________________________________
    dense_1 (Dense)                  (None, 30, 10)        1290        concatenate_1[14][0]             
                                                                       concatenate_1[15][0]             
                                                                       concatenate_1[16][0]             
                                                                       concatenate_1[17][0]             
                                                                       concatenate_1[18][0]             
                                                                       concatenate_1[19][0]             
                                                                       concatenate_1[20][0]             
                                                                       concatenate_1[21][0]             
                                                                       concatenate_1[22][0]             
                                                                       concatenate_1[23][0]             
    ____________________________________________________________________________________________________
    dense_2 (Dense)                  (None, 30, 1)         11          dense_1[13][0]                   
                                                                       dense_1[14][0]                   
                                                                       dense_1[15][0]                   
                                                                       dense_1[16][0]                   
                                                                       dense_1[17][0]                   
                                                                       dense_1[18][0]                   
                                                                       dense_1[19][0]                   
                                                                       dense_1[20][0]                   
                                                                       dense_1[21][0]                   
                                                                       dense_1[22][0]                   
    ____________________________________________________________________________________________________
    attention_weights (Activation)   (None, 30, 1)         0           dense_2[13][0]                   
                                                                       dense_2[14][0]                   
                                                                       dense_2[15][0]                   
                                                                       dense_2[16][0]                   
                                                                       dense_2[17][0]                   
                                                                       dense_2[18][0]                   
                                                                       dense_2[19][0]                   
                                                                       dense_2[20][0]                   
                                                                       dense_2[21][0]                   
                                                                       dense_2[22][0]                   
    ____________________________________________________________________________________________________
    dot_1 (Dot)                      (None, 1, 64)         0           attention_weights[13][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[14][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[15][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[16][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[17][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[18][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[19][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[20][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[21][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[22][0]         
                                                                       bidirectional_6[0][0]            
    ____________________________________________________________________________________________________
    c0 (InputLayer)                  (None, 64)            0                                            
    ____________________________________________________________________________________________________
    lstm_9 (LSTM)                    [(None, 64), (None, 6 33024       dot_1[13][0]                     
                                                                       s0[0][0]                         
                                                                       c0[0][0]                         
                                                                       dot_1[14][0]                     
                                                                       lstm_9[0][0]                     
                                                                       lstm_9[0][2]                     
                                                                       dot_1[15][0]                     
                                                                       lstm_9[1][0]                     
                                                                       lstm_9[1][2]                     
                                                                       dot_1[16][0]                     
                                                                       lstm_9[2][0]                     
                                                                       lstm_9[2][2]                     
                                                                       dot_1[17][0]                     
                                                                       lstm_9[3][0]                     
                                                                       lstm_9[3][2]                     
                                                                       dot_1[18][0]                     
                                                                       lstm_9[4][0]                     
                                                                       lstm_9[4][2]                     
                                                                       dot_1[19][0]                     
                                                                       lstm_9[5][0]                     
                                                                       lstm_9[5][2]                     
                                                                       dot_1[20][0]                     
                                                                       lstm_9[6][0]                     
                                                                       lstm_9[6][2]                     
                                                                       dot_1[21][0]                     
                                                                       lstm_9[7][0]                     
                                                                       lstm_9[7][2]                     
                                                                       dot_1[22][0]                     
                                                                       lstm_9[8][0]                     
                                                                       lstm_9[8][2]                     
    ____________________________________________________________________________________________________
    dense_6 (Dense)                  (None, 11)            715         lstm_9[0][0]                     
                                                                       lstm_9[1][0]                     
                                                                       lstm_9[2][0]                     
                                                                       lstm_9[3][0]                     
                                                                       lstm_9[4][0]                     
                                                                       lstm_9[5][0]                     
                                                                       lstm_9[6][0]                     
                                                                       lstm_9[7][0]                     
                                                                       lstm_9[8][0]                     
                                                                       lstm_9[9][0]                     
    ====================================================================================================
    Total params: 52,960
    Trainable params: 52,960
    Non-trainable params: 0
    

    3.23 Compile the model

    • 编译模型,定义 the loss function, optimizer and metrics you want to use.
      • Loss function: 'categorical_crossentropy'.
      • Optimizer: Adam optimizer
        • learning rate = 0.005
        • (eta_1 = 0.9)
        • (eta_2 = 0.999)
        • decay = 0.01
      • metric: 'accuracy'

    Sample code

    optimizer = Adam(lr=..., beta_1=..., beta_2=..., decay=...)
    model.compile(optimizer=..., loss=..., metrics=[...])
    
    ### START CODE HERE ### (≈2 lines)
    opt = Adam(lr = 0.005, beta_1=0.9, beta_2=0.999, decay=0.01)
    model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
    ### END CODE HERE ###
    

    3.24 定义输入和输出,fit the model

    最后,定义all your inputs and outputs to fit the model:

    • 输入 X of shape ((m = 10000, T_x = 30)) 包含训练样本.

    • 你需要创建 s0 and c0 ,用 0 初始化你的 post_attention_LSTM_cell .

    • 鉴于 model() ,你需要 10个shape为 (m, T_y) 的元素列表。

      • The list outputs[i][0], ..., outputs[i][Ty] represents the true labels (characters) corresponding to the (i^{th}) training example (X[i]).
      • outputs[i][j] is the true label of the (j^{th}) character in the (i^{th}) training example.
    s0 = np.zeros((m, n_s))
    c0 = np.zeros((m, n_s))
    outputs = list(Yoh.swapaxes(0,1))
    
    model.fit([Xoh, s0, c0], outputs, epochs=1, batch_size=100)
    

    Epoch 1/1
    10000/10000 [==============================] - 58s - loss: 17.3019 - dense_6_loss_1: 1.4172 - dense_6_loss_2: 1.1897 - dense_6_loss_3: 1.8663 - dense_6_loss_4: 2.7026 - dense_6_loss_5: 0.8580 - dense_6_loss_6: 1.3185 - dense_6_loss_7: 2.7068 - dense_6_loss_8: 0.9499 - dense_6_loss_9: 1.7128 - dense_6_loss_10: 2.5801 - dense_6_acc_1: 0.3691 - dense_6_acc_2: 0.6124 - dense_6_acc_3: 0.2755 - dense_6_acc_4: 0.0813 - dense_6_acc_5: 0.9209 - dense_6_acc_6: 0.3072 - dense_6_acc_7: 0.0552 - dense_6_acc_8: 0.8989 - dense_6_acc_9: 0.2514 - dense_6_acc_10: 0.1004

    在训练时,您可以看到输出的10个位置中的每个位置的损失以及准确性。

    下表给出了一个例子,如果批处理有两个例子,那么精度可能是什么:

    因此,dense_2_acc_8:0.89 表示您在当前批量数据中,89%的时间正确预测输出了第7个字符。

    运行这个模型更长时间,并保存了权重:

    model.load_weights('models/model.h5')
    

    预测结果:

    EXAMPLES = ['3 May 1979', '5 April 09', '21th of August 2016', 'Tue 10 Jul 2007', 'Saturday May 9 2018', 'March 3 2001', 'March 3rd 2001', '1 March 2001']
    for example in EXAMPLES:
        
        source = string_to_int(example, Tx, human_vocab)
        source = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), source))).swapaxes(0,1)
        prediction = model.predict([source, s0, c0])
        prediction = np.argmax(prediction, axis = -1)
        output = [inv_machine_vocab[int(i)] for i in prediction]
        
        print("source:", example)
        print("output:", ''.join(output),"
    ")
    

    np.swapaxes

    source: 3 May 1979
    output: 1979-05-03 
    
    source: 5 April 09
    output: 2009-05-05 
    
    source: 21th of August 2016
    output: 2016-08-21 
    
    source: Tue 10 Jul 2007
    output: 2007-07-10 
    
    source: Saturday May 9 2018
    output: 2018-05-09 
    
    source: March 3 2001
    output: 2001-03-03 
    
    source: March 3rd 2001
    output: 2001-03-03 
    
    source: 1 March 2001
    output: 2001-03-01 
    

    4. Visualizing Attention

    由于该问题的输出长度固定为10,因此也可以使用10个不同的Softmax单元来生成输出的10个字符来执行此任务。

    但是attention模型的一个优点是,输出的每个部分(例如月份)都知道它只需要依赖于输入的一小部分(输入中的字符给出月份), 我们可以可视化输出的每一部分是看输入的哪一部分。

    考虑翻译 "Saturday 9 May 2018" to "2018-05-09" 工作. 如果我们可视化计算 (alpha^{langle t, t' angle})

    **Figure 8**: Full Attention Map

    注意输出如何忽略输入的“星期六”部分,所有的输出时间步骤都没有注意到输入的这一部分。

    我们还看到,9已经翻译成09,5月已经正确翻译成05,输出注意输入的部分,它需要进行翻译。 年份主要要求它注意输入的“18”以生成“2018”。

    4.1 Getting the attention weights from the network

    让我们现在可视化网络中的注意值。 我们将通过网络传播一个示例,然后可视化 (alpha^{langle t, t' angle}).

    打印模型摘要:

    model.summary()
    
    network结构
    ____________________________________________________________________________________________________
    Layer (type)                     Output Shape          Param #     Connected to                     
    ====================================================================================================
    input_6 (InputLayer)             (None, 30, 37)        0                                            
    ____________________________________________________________________________________________________
    s0 (InputLayer)                  (None, 64)            0                                            
    ____________________________________________________________________________________________________
    bidirectional_6 (Bidirectional)  (None, 30, 64)        17920       input_6[0][0]                    
    ____________________________________________________________________________________________________
    repeat_vector_1 (RepeatVector)   (None, 30, 64)        0           s0[0][0]                         
                                                                       lstm_9[0][0]                     
                                                                       lstm_9[1][0]                     
                                                                       lstm_9[2][0]                     
                                                                       lstm_9[3][0]                     
                                                                       lstm_9[4][0]                     
                                                                       lstm_9[5][0]                     
                                                                       lstm_9[6][0]                     
                                                                       lstm_9[7][0]                     
                                                                       lstm_9[8][0]                     
    ____________________________________________________________________________________________________
    concatenate_1 (Concatenate)      (None, 30, 128)       0           bidirectional_6[0][0]            
                                                                       repeat_vector_1[14][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[15][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[16][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[17][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[18][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[19][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[20][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[21][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[22][0]           
                                                                       bidirectional_6[0][0]            
                                                                       repeat_vector_1[23][0]           
    ____________________________________________________________________________________________________
    dense_1 (Dense)                  (None, 30, 10)        1290        concatenate_1[14][0]             
                                                                       concatenate_1[15][0]             
                                                                       concatenate_1[16][0]             
                                                                       concatenate_1[17][0]             
                                                                       concatenate_1[18][0]             
                                                                       concatenate_1[19][0]             
                                                                       concatenate_1[20][0]             
                                                                       concatenate_1[21][0]             
                                                                       concatenate_1[22][0]             
                                                                       concatenate_1[23][0]             
    ____________________________________________________________________________________________________
    dense_2 (Dense)                  (None, 30, 1)         11          dense_1[13][0]                   
                                                                       dense_1[14][0]                   
                                                                       dense_1[15][0]                   
                                                                       dense_1[16][0]                   
                                                                       dense_1[17][0]                   
                                                                       dense_1[18][0]                   
                                                                       dense_1[19][0]                   
                                                                       dense_1[20][0]                   
                                                                       dense_1[21][0]                   
                                                                       dense_1[22][0]                   
    ____________________________________________________________________________________________________
    attention_weights (Activation)   (None, 30, 1)         0           dense_2[13][0]                   
                                                                       dense_2[14][0]                   
                                                                       dense_2[15][0]                   
                                                                       dense_2[16][0]                   
                                                                       dense_2[17][0]                   
                                                                       dense_2[18][0]                   
                                                                       dense_2[19][0]                   
                                                                       dense_2[20][0]                   
                                                                       dense_2[21][0]                   
                                                                       dense_2[22][0]                   
    ____________________________________________________________________________________________________
    dot_1 (Dot)                      (None, 1, 64)         0           attention_weights[13][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[14][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[15][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[16][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[17][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[18][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[19][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[20][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[21][0]         
                                                                       bidirectional_6[0][0]            
                                                                       attention_weights[22][0]         
                                                                       bidirectional_6[0][0]            
    ____________________________________________________________________________________________________
    c0 (InputLayer)                  (None, 64)            0                                            
    ____________________________________________________________________________________________________
    lstm_9 (LSTM)                    [(None, 64), (None, 6 33024       dot_1[13][0]                     
                                                                       s0[0][0]                         
                                                                       c0[0][0]                         
                                                                       dot_1[14][0]                     
                                                                       lstm_9[0][0]                     
                                                                       lstm_9[0][2]                     
                                                                       dot_1[15][0]                     
                                                                       lstm_9[1][0]                     
                                                                       lstm_9[1][2]                     
                                                                       dot_1[16][0]                     
                                                                       lstm_9[2][0]                     
                                                                       lstm_9[2][2]                     
                                                                       dot_1[17][0]                     
                                                                       lstm_9[3][0]                     
                                                                       lstm_9[3][2]                     
                                                                       dot_1[18][0]                     
                                                                       lstm_9[4][0]                     
                                                                       lstm_9[4][2]                     
                                                                       dot_1[19][0]                     
                                                                       lstm_9[5][0]                     
                                                                       lstm_9[5][2]                     
                                                                       dot_1[20][0]                     
                                                                       lstm_9[6][0]                     
                                                                       lstm_9[6][2]                     
                                                                       dot_1[21][0]                     
                                                                       lstm_9[7][0]                     
                                                                       lstm_9[7][2]                     
                                                                       dot_1[22][0]                     
                                                                       lstm_9[8][0]                     
                                                                       lstm_9[8][2]                     
    ____________________________________________________________________________________________________
    dense_6 (Dense)                  (None, 11)            715         lstm_9[0][0]                     
                                                                       lstm_9[1][0]                     
                                                                       lstm_9[2][0]                     
                                                                       lstm_9[3][0]                     
                                                                       lstm_9[4][0]                     
                                                                       lstm_9[5][0]                     
                                                                       lstm_9[6][0]                     
                                                                       lstm_9[7][0]                     
                                                                       lstm_9[8][0]                     
                                                                       lstm_9[9][0]                     
    ====================================================================================================
    Total params: 52,960
    Trainable params: 52,960
    Non-trainable params: 0
    

    浏览上面 model.summary() 的输出。

    你可以看到图层名为 attention_weights 的输出 alphas 维度 (m, 30, 1) 在 dot_2 计算每个时间步 (t=0,...,T_y - 1)的上下文向量之前。

    函数 attention_map() 从模型中提取注意值并绘制它们。

    attention_map = plot_attention_map(model, human_vocab, inv_machine_vocab, "Tuesday 09 Oct 1993", num = 7, n_s = 64);
    

    5. 完整代码

    view code
    #-*- coding: utf8 -*-
    from keras.layers import Bidirectional, Concatenate, Permute, Dot, Input, LSTM, Multiply
    from keras.layers import RepeatVector, Dense, Activation, Lambda
    from keras.optimizers import Adam
    from keras.utils import to_categorical
    from keras.models import load_model, Model
    import keras.backend as K
    import numpy as np
    
    from faker import Faker
    import random
    from tqdm import tqdm
    from babel.dates import format_date
    from nmt_utils import *
    import matplotlib.pyplot as plt
    
    
    m = 10000
    dataset, human_vocab, machine_vocab, inv_machine_vocab = load_dataset(m)
    print(dataset[:10])
    print(human_vocab, len(human_vocab))
    print(machine_vocab, len(machine_vocab))
    
    
    Tx = 30
    Ty = 10
    X, Y, Xoh, Yoh = preprocess_data(dataset, human_vocab, machine_vocab, Tx, Ty)
    print("X.shape:", X.shape)
    print("Y.shape:", Y.shape)
    print("Xoh.shape:", Xoh.shape)
    print("Yoh.shape:", Yoh.shape)
    
    
    index = 0
    print("Source date:", dataset[index][0])
    print("Target date:", dataset[index][1])
    print()
    print("Source after preprocessing (indices):", X[index])
    print("Target after preprocessing (indices):", Y[index])
    print()
    print("Source after preprocessing (one-hot):", Xoh[index])   # 每行是一个T_t的输出,输出的是对应相应字符的一个one-hot向量.
    print("Target after preprocessing (one-hot):", Yoh[index])
    
    
    # Defined shared layers as global variables
    repeator = RepeatVector(Tx)                
    concatenator = Concatenate(axis=-1)
    densor1 = Dense(10, activation = "tanh")
    densor2 = Dense(1, activation = "relu")
    activator = Activation(softmax, name='attention_weights') # We are using a custom softmax(axis = 1) loaded in this notebook
    dotor = Dot(axes = 1)
    
    
    # GRADED FUNCTION: one_step_attention
    
    def one_step_attention(a, s_prev):
        """
        Performs one step of attention: Outputs a context vector computed as a dot product of the attention weights
        "alphas" and the hidden states "a" of the Bi-LSTM.
        
        Arguments:
        a -- hidden state output of the Bi-LSTM, numpy-array of shape (m, Tx, 2*n_a)
        s_prev -- previous hidden state of the (post-attention) LSTM, numpy-array of shape (m, n_s)
        
        Returns:
        context -- context vector, input of the next (post-attention) LSTM cell
        """
        
        ### START CODE HERE ###
        # Use repeator to repeat s_prev to be of shape (m, Tx, n_s) so that you can concatenate it with all hidden states "a" (≈ 1 line)
        s_prev = repeator(s_prev)
        # Use concatenator to concatenate a and s_prev on the last axis (≈ 1 line)
        # For grading purposes, please list 'a' first and 's_prev' second, in this order.
        concat = concatenator([a, s_prev])
        # Use densor1 to propagate concat through a small fully-connected neural network to compute the "intermediate energies" variable e. (≈1 lines)
        e = densor1(concat)
        # Use densor2 to propagate e through a small fully-connected neural network to compute the "energies" variable energies. (≈1 lines)
        energies = densor2(e)
        # Use "activator" on "energies" to compute the attention weights "alphas" (≈ 1 line)
        alphas = activator(energies)
        # Use dotor together with "alphas" and "a" to compute the context vector to be given to the next (post-attention) LSTM-cell (≈ 1 line)
        context = dotor([alphas, a])
        ### END CODE HERE ###
        
        return context
    
    
    n_a = 32 # number of units for the pre-attention, bi-directional LSTM's hidden state 'a'
    n_s = 64 # number of units for the post-attention LSTM's hidden state "s"
    
    # Please note, this is the post attention LSTM cell.  
    # For the purposes of passing the automatic grader
    # please do not modify this global variable.  This will be corrected once the automatic grader is also updated.
    post_activation_LSTM_cell = LSTM(n_s, return_state = True) # post-attention LSTM 
    output_layer = Dense(len(machine_vocab), activation=softmax)
    
    # GRADED FUNCTION: model
    
    def model(Tx, Ty, n_a, n_s, human_vocab_size, machine_vocab_size):
        """
        Arguments:
        Tx -- length of the input sequence
        Ty -- length of the output sequence
        n_a -- hidden state size of the Bi-LSTM
        n_s -- hidden state size of the post-attention LSTM
        human_vocab_size -- size of the python dictionary "human_vocab"
        machine_vocab_size -- size of the python dictionary "machine_vocab"
    
        Returns:
        model -- Keras model instance
        """
        
        # Define the inputs of your model with a shape (Tx,)
        # Define s0 and c0, initial hidden state for the decoder LSTM of shape (n_s,)
        X = Input(shape=(Tx, human_vocab_size))
        s0 = Input(shape=(n_s,), name='s0')
        c0 = Input(shape=(n_s,), name='c0')
        s = s0
        c = c0
        
        # Initialize empty list of outputs
        outputs = []
        
        ### START CODE HERE ###
        
        # Step 1: Define your pre-attention Bi-LSTM. Remember to use return_sequences=True. (≈ 1 line)
        a = Bidirectional(LSTM(n_a,return_sequences=True))(X)
        
        # Step 2: Iterate for Ty steps
        for t in range(Ty):
        
            # Step 2.A: Perform one step of the attention mechanism to get back the context vector at step t (≈ 1 line)
            context = one_step_attention(a, s)
            
            # Step 2.B: Apply the post-attention LSTM cell to the "context" vector.
            # Don't forget to pass: initial_state = [hidden state, cell state] (≈ 1 line)
            s, _, c = post_activation_LSTM_cell(context, initial_state=[s, c])
            
            # Step 2.C: Apply Dense layer to the hidden state output of the post-attention LSTM (≈ 1 line)
            out = output_layer(s)
            
            # Step 2.D: Append "out" to the "outputs" list (≈ 1 line)
            outputs.append(out)
        
        # Step 3: Create model instance taking three inputs and returning the list of outputs. (≈ 1 line)
        model = Model([X, s0, c0], outputs)
        
        ### END CODE HERE ###
        
        return model
    
    
    model = model(Tx, Ty, n_a, n_s, len(human_vocab), len(machine_vocab))
    model.summary()
    
    ### START CODE HERE ### (≈2 lines)
    opt = Adam(lr = 0.005, beta_1=0.9, beta_2=0.999, decay=0.01)
    model.compile(loss='categorical_crossentropy', optimizer=opt, metrics=['accuracy'])
    ### END CODE HERE ###
    
    s0 = np.zeros((m, n_s))
    c0 = np.zeros((m, n_s))
    outputs = list(Yoh.swapaxes(0,1))
    model.fit([Xoh, s0, c0], outputs, epochs=1, batch_size=100)
    
    
    model.load_weights('models/model.h5')
    
    
    EXAMPLES = ['3 May 1979', '5 April 09', '21th of August 2016', 'Tue 10 Jul 2007', 'Saturday May 9 2018', 'March 3 2001', 'March 3rd 2001', '1 March 2001']
    for example in EXAMPLES:
        
        source = string_to_int(example, Tx, human_vocab)
        source = np.array(list(map(lambda x: to_categorical(x, num_classes=len(human_vocab)), source))).swapaxes(0,1)
        prediction = model.predict([source, s0, c0])
        prediction = np.argmax(prediction, axis = -1)
        output = [inv_machine_vocab[int(i)] for i in prediction]
        
        print("source:", example)
        print("output:", ''.join(output),"
    ")
    
    
    model.summary()
    attention_map = plot_attention_map(model, human_vocab, inv_machine_vocab, "Tuesday 09 Oct 1993", num = 7, n_s = 64)
    
  • 相关阅读:
    http://blog.csdn.net/jyw935478490/article/details/51233931
    http://www.roncoo.com/article/detail/124661
    http://blog.csdn.net/chenleixing/article/details/43740759
    http://www.xttblog.com/?p=794
    http://jingyan.baidu.com/article/2009576193ee38cb0721b416.html
    Java 生成16/32位 MD5
    AI(Adobe Illustrator)简单入门——骷髅
    AI(Adobe Illustrator)简单入门——米老鼠
    ovirt-engine安装
    service postgresql initdb [FAILED]
  • 原文地址:https://www.cnblogs.com/douzujun/p/13251998.html
Copyright © 2011-2022 走看看