1. 数据集
import numpy as np
import torch
from torch import nn, optim
from torchtext import data, datasets
import numpy as np
import torch
from torch import nn, optim
from torchtext import data, datasets
# use torchtext to load data, no need to download dataset
# set up fields
# 两个Field对象定义字段的处理方法(文本字段、标签字段)
TEXT = data.Field(tokenize='spacy') # 分词
LABEL = data.LabelField(dtype=torch.float)
# make splits for data
# IMDB共50000影评,包含正面和负面两个类别。数据被前面的Field处理
# 按照(TEXT, LABEL) 分割成 训练集,测试集
train_data, test_data = datasets.IMDB.splits(TEXT, LABEL)
print('len of train data:', len(train_data)) # 25000
print('len of test data:', len(test_data)) # 25000
# torchtext.data.Example : 用来表示一个样本,数据+标签
print(train_data.examples[15].text) # 文本:句子的单词列表
print(train_data.examples[15].label) # 标签: 积极
# ['The', 'movie', 'is', 'a', 'bit', '"', 'thin', '"', 'after', 'reading', 'the', 'book', ',', 'but', 'it', "'s", 'still', 'one', 'of', 'the', 'greatest', 'movies', 'ever', 'made', '.', 'Sheryl', 'Lee', 'is', 'beautiful', 'and', 'Nick', 'Nolte', 'is', 'really', '"', 'vonneguty', '"', '.', 'He', 'makes', 'great', 'job', 'expressing', 'the', 'feelings', 'from', 'the', 'book', 'to', 'the', 'film', '.', 'Not', 'many', 'films', 'engage', 'the', 'feeling', 'of', 'the', 'book', 'as', 'well', 'as', 'Mother', 'Night', 'does', '.']
# pos
# build the vocabulary
# 在这种情况下,会默认下载glove.6B.zip文件,进而解压出glove.6B.50d.txt, glove.6B.100d.txt, glove.6B.200d.txt, glove.6B.300d.txt这四个文件
# 因此我们可以事先将glove.6B.zip或glove.6B.100d.txt放在当前文件夹下
TEXT.build_vocab(train_data, max_size=10000, vectors='glove.6B.100d') # 等价:text.build_vocab(train, vectors=GloVe(name='6B', dim=100))
LABEL.build_vocab(train_data)
print(len(TEXT.vocab)) # 10002
print(TEXT.vocab.itos[:12]) # ['<unk>', '<pad>', 'the', ',', '.', 'and', 'a', 'of', 'to', 'is', 'in', 'I']
print(TEXT.vocab.stoi['and']) # 5
print(LABEL.vocab.stoi) # defaultdict(None, {'neg': 0, 'pos': 1})
# 一个batch30个句子,将 text 全部转换成 数字
batchsz = 30
device = torch.device('cuda')
train_iterator, test_iterator = data.BucketIterator.splits(
(train_data, test_data),
batch_size = batchsz,
device=device
)
Tips:
- 训练时,传入rnn的数据,是 sentences_to_indices之后的 字符串对应的数字
2. 使用预训练的词向量
class RNN(nn.Module):
def __init__(self, vocab_size, embedding_dim, hidden_dim):
super().__init__()
# [0-10001] => [100]
# 参数1:embedding个数(单词数), 参数2:embedding的维度(词向量维度)
self.embedding = nn.Embedding(vocab_size, embedding_dim)
...
pass
...
def forward(self, x):
"""
x: [seq_len, b] vs [b, 3, 28, 28]
"""
# [seq_len, b, 1] => [seq_len, b, 100]
embedding = self.dropout(self.embedding(x))
...
pass
...
return out
rnn = RNN(len(TEXT.vocab), 100, 256) # 词个数,词嵌入维度,输出维度
pretrained_embedding = TEXT.vocab.vectors
print('pretrained_embedding:', pretrained_embedding.shape) # torch.Size([10002, 100])
# 使用预训练过的embedding来替换随机初始化
rnn.embedding.weight.data.copy_(pretrained_embedding)
print('embedding layer inited.')
Tips:
- 输出的预测也是数字,可以用
LABEL.vocab.itos[idx]
转成字符串