zoukankan      html  css  js  c++  java
  • 《Microsoft SQL Server 2008 MDX Step by Step》学习笔记七:执行聚合(上)

    SQL Server 2008中SQL应用系列及BI笔记系列--目录索引

    导读:本文介绍执行聚合(Aggregation)的进阶内容,包括:

    ■1、用Sum和Aggregation执行求和

    ■2、用Avg函数计算均值

    ■3、用表达式计算均值

    ■4、用Stedv计算标准偏差

    本文所用数据库和所有源码,请到微软官网下载

    1、执行求和

    MDX的聚合函数:Aggregationhttp://msdn.microsoft.com/zh-cn/library/ms145524.aspx

    求和还有一个函数:Sum(http://msdn.microsoft.com/zh-cn/library/ms145484.aspx

    我们依旧从一个最简单的例子看起

    例7-1

    SELECT
    {
    ([Measures].[Reseller Sales Amount]),
    ([Measures].[Reseller Transaction Count]),
    ([Measures].[Reseller Order Count])
    } ON COLUMNS,
    TopCount(
    {[Product].[Subcategory].[Subcategory].Members},
    5,
    ([Measures].[Reseller Sales Amount])
    ) +
    {([Product].[Subcategory].[All Products])} ON ROWS
    FROM [Step-by-Step]
    ;

    需要说明的是:上例中,[Reseller Sales Amount]代表这个表中Sales Amount字段的数量,[Reseller Transaction Count]代表底层事实表数据记录的数值,[Reseller Order Count]代表底层事实表的订单数。

    查询结果如下:

    邀月工作室

    下面我们增加对subcategory进行TopCount 5 求和

    例7-2

    WITH
    MEMBER [Product].[Subcategory].[Top 5] AS
    Sum(
    TopCount(
    [Product].[Subcategory].[Subcategory].Members,
    5,
    ([Measures].[Reseller Sales Amount])
    ),
    ([Measures].CurrentMember)
    )
    SELECT
    {
    ([Measures].[Reseller Sales Amount]),
    ([Measures].[Reseller Transaction Count]),
    ([Measures].[Reseller Order Count])
    } ON COLUMNS,
    TopCount(
    [Product].[Subcategory].[Subcategory].Members,
    5,
    ([Measures].[Reseller Sales Amount])
    ) +
    {
    ([Product].[Subcategory].[Top 5]),
    ([Product].[Subcategory].[All Products])
    } ON ROWS
    FROM [Step-by-Step]
    ;

    结果如下:
    邀月工作室

    前两列是累加的,因而没有问题,最后一列Reseller Order Count不是从五个分类中累加的,而是对所有产品中的子分类的订单进行汇总。很显然,这不是我们想要的结果,此时,我们需要借助于Aggregation函数

    例7-3

    WITH
    MEMBER [Product].[Subcategory].[Top 5] AS
    Aggregate(
    TopCount(
    [Product].[Subcategory].[Subcategory].Members,
    5,
    ([Measures].[Reseller Sales Amount])
    ),
    ([Measures].CurrentMember)
    )
    SELECT
    {
    ([Measures].[Reseller Sales Amount]),
    ([Measures].[Reseller Transaction Count]),
    ([Measures].[Reseller Order Count])
    } ON COLUMNS,
    TopCount(
    [Product].[Subcategory].[Subcategory].Members,
    5,
    ([Measures].[Reseller Sales Amount])
    ) +
    {
    ([Product].[Subcategory].[Top 5]),
    ([Product].[Subcategory].[All Products])
    } ON ROWS
    FROM [Step-by-Step]
    ;

    邀月工作室

    Tips:在求和时,我们通常应该使用Aggregion,而非Sum。当然,这并非绝对。

    2、用AVG函数计算均值

    MDX中的求均值函数为Avg(http://msdn.microsoft.com/zh-cn/library/ms146067.aspx

    我们还是从一个最简单的例子入手:

    例7-4

    SELECT
    {([Measures].[Reseller Sales Amount])} ON COLUMNS,
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    } ON ROWS
    FROM [Step-by-Step]
    ;

    邀月工作室

    下面我们求均值

    例7-5

    WITH
    MEMBER [Date].[Calendar].[CY 2003 Monthly Avg Reseller Sales] AS
    Avg(
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    },
    [Measures].CurrentMember
    )
    SELECT
    {([Measures].[Reseller Sales Amount])} ON COLUMNS,
    {([Date].[Calendar].[CY 2003 Monthly Avg Reseller Sales])} +
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    } ON ROWS
    FROM [Step-by-Step]
    ;

    结果:

    邀月工作室

    加上季度数据

    例7-6

    WITH
    MEMBER [Date].[Calendar].[CY 2003 Monthly Avg Reseller Sales] AS
    Avg(
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    },
    [Measures].CurrentMember
    )
    SELECT
    {([Measures].[Reseller Sales Amount])} ON COLUMNS,
    {([Date].[Calendar].[CY 2003 Monthly Avg Reseller Sales])} +
    Hierarchize(
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    } +
    {
    [Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:
    [Date].[Calendar].[Calendar Quarter].[Q4 CY 2003]
    }
    ) ON ROWS
    FROM [Step-by-Step]
    ;

    邀月工作室

    加上季度平均:

    例7-7

    WITH
    MEMBER [Date].[Calendar].[CY 2003 Quarterly Avg Reseller Sales] AS
    Avg(
    {
    [Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:
    [Date].[Calendar].[Calendar Quarter].[Q4 CY 2003]
    },
    [Measures].CurrentMember
    )
    MEMBER [Date].[Calendar].[CY 2003 Monthly Avg Reseller Sales] AS
    Avg(
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    },
    [Measures].CurrentMember
    )
    SELECT
    {([Measures].[Reseller Sales Amount])} ON COLUMNS,
    {
    ([Date].[Calendar].[CY 2003 Monthly Avg Reseller Sales]),
    ([Date].[Calendar].[CY 2003 Quarterly Avg Reseller Sales])
    } +
    Hierarchize(
    {
    [Date].[Calendar].[Month].[January 2003]:
    [Date].[Calendar].[Month].[December 2003]
    } +
    {
    [Date].[Calendar].[Calendar Quarter].[Q1 CY 2003]:
    [Date].[Calendar].[Calendar Quarter].[Q4 CY 2003]
    }
    ) ON ROWS
    FROM [Step-by-Step]
    ;

    注意:AVG是一个静态函数,那么,如果是动态的表达式求均值,用什么方法?

    3、用表达式计算均值

    例7-8

    SELECT
    {
    ([Measures].[Reseller Sales Amount]),
    ([Measures].[Reseller Order Count])
    } ON COLUMNS,
    {
    [Date].[Calendar Year].[CY 2001]:
    [Date].[Calendar Year].[CY 2004]
    } ON ROWS
    FROM [Step-by-Step]
    ;

    邀月工作室

    下面我们加上每年的月均值,这是动态计算的:

    例7-9

    WITH
    MEMBER [Measures].[Monthly Avg Reseller Sales Amount] AS
    Avg(
    EXISTING [Date].[Calendar].[Month].Members,
    [Measures].[Reseller Sales Amount]
    )
    SELECT
    {
    ([Measures].[Reseller Sales Amount]),
    ([Measures].[Reseller Order Count]),
    ([Measures].[Monthly Avg Reseller Sales Amount])
    } ON COLUMNS,
    {
    [Date].[Calendar Year].[CY 2001]:
    [Date].[Calendar Year].[CY 2004]
    } ON ROWS
    FROM [Step-by-Step]
    ;

    邀月工作室

    下面我们再加上每年的每个订单的销售均值,这也是动态计算的:

    例7-10

    WITH
    MEMBER [Measures].[Average Reseller Sales Amount] AS
    ([Measures].[Reseller Sales Amount]) / ([Measures].[Reseller Order Count])
    ,FORMAT_STRING="Currency"
    MEMBER [Measures].[Monthly Avg Reseller Sales Amount] AS
    Avg(
    EXISTING [Date].[Calendar].[Month].Members,
    [Measures].[Reseller Sales Amount]
    )
    SELECT
    {
    ([Measures].[Reseller Sales Amount]),
    ([Measures].[Reseller Order Count]),
    ([Measures].[Monthly Avg Reseller Sales Amount]),
    ([Average Reseller Sales Amount])
    } ON COLUMNS,
    {
    [Date].[Calendar Year].[CY 2001]:
    [Date].[Calendar Year].[CY 2004]
    } ON ROWS
    FROM [Step-by-Step]
    ;

    4、计算标准偏差

    MDX使用函数Stdev(http://msdn.microsoft.com/zh-cn/library/ms146068.aspx),来计算标准差,它使用无偏差总体公式,而

    对应地,StdevP 函数(http://msdn.microsoft.com/zh-cn/library/ms146019.aspx)使用有偏差总体公式。

    看一个复杂点的例子:

    例7-11

    WITH
    MEMBER [Measures].[Average Reseller Sales Amount] AS
    ([Measures].[Reseller Sales Amount])/ ([Measures].[Reseller Transaction Count])
    ,FORMAT_STRING="Currency"
    MEMBER [Measures].[Variance Reseller Sales Amount] AS
    (
    ([Measures].[Squared Reseller Sales Amount]) /
    (([Measures].[Reseller Transaction Count])-1)
    ) -
    (([Measures].[Average Reseller Sales Amount])^2)
    ,FORMAT_STRING="Currency"
    MEMBER [Measures].[StDev Reseller Sales Amount] AS
    ([Measures].[Variance Reseller Sales Amount])^(0.5)
    ,FORMAT_STRING="Currency"
    SELECT
    {
    ([Measures].[Average Reseller Sales Amount]),
    ([Measures].[Variance Reseller Sales Amount]),
    ([Measures].[StDev Reseller Sales Amount])
    } ON COLUMNS,
    {
    [Date].[Calendar Year].[CY 2001]:
    [Date].[Calendar Year].[CY 2004]
    } ON ROWS
    FROM [Step-by-Step]
    ;

    注意:本例中Squared Reseller Sales Amount度量调用一个命名计算

    邀月工作室

    执行结果:

    邀月工作室

    小结:本文是聚合函数的进阶,介绍了Aggregation与Sum函数的细微区别,用AVG求静态均值和用表达式求动态均值,还有一个计算标准偏差的函数Stdev。

    下文将继续学习Min和Max函数及其他聚合相关功能。

    参考资源:

    1、MDX官方教程(http://msdn.microsoft.com/zh-cn/library/ms145506.aspx

  • 相关阅读:
    windows中dos命令指南
    HDU 2084 数塔 (dp)
    HDU 1176 免费馅饼 (dp)
    HDU 1004 Let the Balloon Rise (map)
    变态杀人狂 (数学)
    HDU 2717 Catch That Cow (深搜)
    HDU 1234 开门人和关门人 (模拟)
    HDU 1070 Milk (模拟)
    HDU 1175 连连看 (深搜+剪枝)
    HDU 1159 Common Subsequence (dp)
  • 原文地址:https://www.cnblogs.com/downmoon/p/2260081.html
Copyright © 2011-2022 走看看