zoukankan      html  css  js  c++  java
  • 【深度学习】吴恩达网易公开课练习(class1 week3)

    知识点梳理

    python工具使用:

    1. sklearn: 数据挖掘,数据分析工具,内置logistic回归
    2. matplotlib: 做图工具,可绘制等高线等
    3. 绘制散点图: plt.scatter(X[0, :], X[1, :], c=np.squeeze(Y), s=40, cmap=plt.cm.Spectral); s:绘制点大小 cmap:颜色集
    4. 绘制等高线: 先做网格,计算结果,绘图
         x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
         y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
         h = 0.01
         xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
         Z = model(np.c_[xx.ravel(), yy.ravel()])
         Z = Z.reshape(xx.shape)
         #xx是x轴值, yy是y轴值, Z是预测结果值, cmap表示采用什么颜色
         plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    

    关键变量:

    • m: 训练样本数量
    • n_x:一个训练样本的输入数量,输入层大小
    • n_h:隐藏层大小
    • 方括号上标[l]: 第l层
    • 圆括号上标(i): 第i个样本

    $$ X = left[ egin{matrix} vdots & vdots & vdots & vdots \ x^{(1)} & x^{(2)} & vdots & x^{(m)} \ vdots & vdots & vdots & vdots \ end{matrix} ight]_{(n\_x, m)} $$

    $$ W^{[1]} = left[ egin{matrix} cdots & w^{[1] T}_1 & cdots \ cdots & w^{[1] T}_2 & cdots \ cdots & cdots & cdots \ cdots & w^{[1] T}_{n\_h} & cdots \ end{matrix} ight]_{(n\_h, n\_x)} $$

    $$ b^{[1]} = left[ egin{matrix} b^{[1]}_1 \ b^{[1]}_2 \ vdots \ b^{[1]}_{n\_h} \ end{matrix} ight]_{(n\_h, 1)} $$

    $$ A^{[1]}= left[ egin{matrix} vdots & vdots & vdots & vdots \ a^{[1](1)} & a^{[1](2)} & vdots & a^{[1](m)} \ vdots & vdots & vdots & vdots \ end{matrix} ight]_{(n\_h, m)} $$

    $$ Z^{[1]}= left[ egin{matrix} vdots & vdots & vdots & vdots \ z^{[1](1)} & z^{[1](2)} & vdots & z^{[1](m)} \ vdots & vdots & vdots & vdots \ end{matrix} ight]_{(n\_h, m)} $$

    ***

    单隐层神经网络关键公式:

    • 前向传播:

    $$Z^{[1]}=W^{[1]}X+b^{[1]}$$ $$A^{[1]}=g^{[1]}(Z^{[1]})$$ $$Z^{[2]}=W^{[2]}A^{[1]}+b^{[2]}$$ $$A^{[2]}=g^{[2]}(Z^{[2]})$$

        Z1 = np.dot(W1, X) + b1  
        A1 = np.tanh(Z1)  
        Z2 = np.dot(W2, A1) + b2  
        A2 = sigmoid(Z2)  
    
    • 反向传播
        dZ2 = A2 - Y   
        dW2 = 1 / m * np.dot(dZ2, A1.T)  
        db2 = 1 / m * np.sum(dZ2, axis = 1, keepdims = True)    
        dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2))    
        dW1 = 1 / m * np.dot(dZ1, X.T)  
        db1 = 1 / m * np.sum(dZ1, axis = 1, keepdims = True)  
    
    • cost计算

    [J = - frac{1}{m} sumlimits_{i = 0}^{m} large{(} small y^{(i)}logleft(a^{[2] (i)} ight) + (1-y^{(i)})logleft(1- a^{[2] (i)} ight) large{)} small ]

        logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y)  
        cost = - 1 / m * np.sum(logprobs)
    

    单隐层神经网络代码:

    # Package imports
    import numpy as np
    import matplotlib.pyplot as plt
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
    
    %matplotlib inline
    
    np.random.seed(1) # set a seed so that the results are consistent
    
    
    def initialize_parameters(n_x, n_h, n_y):
        np.random.seed(2) # we set up a seed so that your output matches ours although the initialization is random.
        
        W1 = np.random.randn(n_h, n_x) * 0.01
        b1 = np.zeros((n_h, 1))
        W2 = np.random.randn(n_y, n_h)
        b2 = np.zeros((n_y, 1))
        
        assert (W1.shape == (n_h, n_x))
        assert (b1.shape == (n_h, 1))
        assert (W2.shape == (n_y, n_h))
        assert (b2.shape == (n_y, 1))
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    
    
    def forward_propagation(X, parameters):
        # Retrieve each parameter from the dictionary "parameters"
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Implement Forward Propagation to calculate A2 (probabilities)
        Z1 = np.dot(W1, X) + b1
        A1 = np.tanh(Z1)
        Z2 = np.dot(W2, A1) + b2
        A2 = sigmoid(Z2)
        
        assert(A2.shape == (1, X.shape[1]))
        
        cache = {"Z1": Z1,
                 "A1": A1,
                 "Z2": Z2,
                 "A2": A2}
        
        return A2, cache
    
    
    def compute_cost(A2, Y, parameters):
        m = Y.shape[1] # number of example
    
        # Compute the cross-entropy cost
        logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y)
        cost = - 1 / m * np.sum(logprobs)
        
        cost = np.squeeze(cost)     # makes sure cost is the dimension we expect. 
                                    # E.g., turns [[17]] into 17 
        assert(isinstance(cost, float))
        
        return cost
    
    
    def backward_propagation(parameters, cache, X, Y):
        m = X.shape[1]
        
        # First, retrieve W1 and W2 from the dictionary "parameters".
        W1 = parameters["W1"]
        W2 = parameters["W2"]
            
        # Retrieve also A1 and A2 from dictionary "cache".
        A1 = cache["A1"]
        A2 = cache["A2"]
        
        # Backward propagation: calculate dW1, db1, dW2, db2. 
        dZ2 = A2 - Y 
        dW2 = 1 / m * np.dot(dZ2, A1.T)
        db2 = 1 / m * np.sum(dZ2, axis = 1, keepdims = True)
        dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2)) 
        dW1 = 1 / m * np.dot(dZ1, X.T)
        db1 = 1 / m * np.sum(dZ1, axis = 1, keepdims = True)
        
        grads = {"dW1": dW1,
                 "db1": db1,
                 "dW2": dW2,
                 "db2": db2}
        
        return grads
    
    
    def update_parameters(parameters, grads, learning_rate = 0.8):
        # Retrieve each parameter from the dictionary "parameters"
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Retrieve each gradient from the dictionary "grads"
        dW1 = grads["dW1"]
        db1 = grads["db1"]
        dW2 = grads["dW2"]
        db2 = grads["db2"]
        
        # Update rule for each parameter
        W1 = W1 - learning_rate * dW1
        b1 = b1 - learning_rate * db1
        W2 = W2 - learning_rate * dW2
        b2 = b2 - learning_rate * db2
        
        parameters = {"W1": W1,
                      "b1": b1,
                      "W2": W2,
                      "b2": b2}
        
        return parameters
    
    
    def nn_model(X, Y, n_h, num_iterations = 10000, print_cost=False):
        np.random.seed(3)
        n_x = X.shape[0]
        n_y = Y.shape[0]
        
        # Initialize parameters, then retrieve W1, b1, W2, b2. Inputs: "n_x, n_h, n_y". Outputs = "W1, b1, W2, b2, parameters".
        parameters = initialize_parameters(n_x, n_h, n_y)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        # Loop (gradient descent)
        for i in range(0, num_iterations):
            # Forward propagation. Inputs: "X, parameters". Outputs: "A2, cache".
            A2, cache = forward_propagation(X, parameters)
            
            # Cost function. Inputs: "A2, Y, parameters". Outputs: "cost".
            cost = compute_cost(A2, Y, parameters)
     
            # Backpropagation. Inputs: "parameters, cache, X, Y". Outputs: "grads".
            grads = backward_propagation(parameters, cache, X, Y)
     
            # Gradient descent parameter update. Inputs: "parameters, grads". Outputs: "parameters".
            parameters = update_parameters(parameters, grads)
            
            # Print the cost every 1000 iterations
            if print_cost and i % 1000 == 0:
                print ("Cost after iteration %i: %f" %(i, cost))
    
        return parameters
    
    
    def predict(parameters, X):
        # Computes probabilities using forward propagation, and classifies to 0/1 using 0.5 as the threshold.
        A2, cache =  forward_propagation(X, parameters)
        predictions = A2 > 0.5
        
        return predictions
    
    
    X, Y = load_planar_dataset()
    # Build a model with a n_h-dimensional hidden layer
    parameters = nn_model(X, Y, n_h = 4, num_iterations = 10000, print_cost=True)
    
    # Plot the decision boundary
    plot_decision_boundary(lambda x: predict(parameters, x.T), X, np.squeeze(Y))
    plt.title("Decision Boundary for hidden layer size " + str(4))
    
    # planar_utils.py
    import matplotlib.pyplot as plt
    import numpy as np
    import sklearn
    import sklearn.datasets
    import sklearn.linear_model
    
    def plot_decision_boundary(model, X, y):
        # Set min and max values and give it some padding
        x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
        y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
        h = 0.01
        # Generate a grid of points with distance h between them
        # 创造网格,以0.01为间隔划分整个区间
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole grid
        # 计算每个网格点上的预测结果
        Z = model(np.c_[xx.ravel(), yy.ravel()])
        # 将预测结果变形为与网格形式一致
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        # xx是x轴值, yy是y轴值, Z是预测结果值, cmap表示采用什么颜色
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) #等位线
        plt.ylabel('x2')
        plt.xlabel('x1')
        plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral)
        
    
    def sigmoid(x):
        """
        Compute the sigmoid of x
    
        Arguments:
        x -- A scalar or numpy array of any size.
    
        Return:
        s -- sigmoid(x)
        """
        s = 1/(1+np.exp(-x))
        return s
    
    def load_planar_dataset():
        np.random.seed(1)
        m = 400 # number of examples
        N = int(m/2) # number of points per class
        D = 2 # dimensionality
        X = np.zeros((m,D)) # data matrix where each row is a single example
        Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
        a = 4 # maximum ray of the flower
    
        for j in range(2):
            ix = range(N*j,N*(j+1))
            t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
            r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
            X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
            Y[ix] = j
            
        X = X.T
        Y = Y.T
    
        return X, Y
    
    def load_extra_datasets():  
        N = 200
        noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3)
        noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2)
        blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6)
        gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None)
        no_structure = np.random.rand(N, 2), np.random.rand(N, 2)
        
        return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure
    
  • 相关阅读:
    实践是检验真理的唯一标准——《精益创业实战》让你的成功飞起来
    蛇年谈程序员发展之路
    蛇年,你使用Python语言编程了吗?
    由《30天自制操作系统》引发的漫画创作
    《七周七语言:理解多种编程范型》书评整理
    精益创业实战
    一本为程序员量身打造的面试逻辑题宝典——《程序员面试逻辑题解析》
    从1.5k到18k, 一个程序员的5年成长之路
    Comparator and Comparable及Collections and Collection的用法和区别
    线程同步
  • 原文地址:https://www.cnblogs.com/dplearning/p/8373010.html
Copyright © 2011-2022 走看看