作用
支持在二维平面上插入一个线段,查询覆盖横坐标 (x) 的所有线段的 (y) 的最大/最小值。
如果是直线(即覆盖整个平面),那么是 (O(log n)) ,否则是 (O(log^2n))
算法思想
对于线段树每个区间,保存其“最优势线段”。定义为在 mid 处取最值的区间。可以证明求答案时答案一定取在从根到叶子的路径上的所有“最优势线段”。
每次来一个新的线段时,和旧线段比较,如果更优势那么替换掉,否则尝试继续向下递归覆盖。比如新线段和旧线段的交点在mid左边,那么就用剩下的一个线段去递归左区间。
好的证明比较难,感性理解一下的话又似乎很对,所以就不证了……
关于复杂度:首先定位对应区间,再对每个区间尝试向下递归覆盖,后者因为每次递归一边所以至多log次。总复杂度 (O(log^2 n))
这个东西最厉害的地方在一些关于凸包/一次函数的题目非常无脑。并且李超线段树也是一个维护凸包的有力工具。
例题
裸题。实际上写成y=kx+b的形式会更短也更快,但是这个题的坐标范围比较大,理论上是会爆精度过不了的……
// luogu-judger-enable-o2
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
typedef long double LD;
typedef pair<int,int> pii;
typedef pair<LL,int> pli;
const int SZ = 1e5 + 10;
const int INF = 1e9 + 10;
const int mod = 1e9 + 7;
const LD eps = 1e-8;
LL read() {
LL n = 0;
char a = getchar();
bool flag = 0;
while(a > '9' || a < '0') { if(a == '-') flag = 1; a = getchar(); }
while(a <= '9' && a >= '0') { n = n * 10 + a - '0',a = getchar(); }
if(flag) n = -n;
return n;
}
struct Point {
int x,y;
Point() {}
Point(int _x,int _y):x(_x),y(_y) {}
Point operator -(Point o) { return Point(x-o.x,y-o.y); }
LL operator ^(Point o) { return 1ll*x*o.y-1ll*y*o.x; }
};
struct Line {
Point a,b;
Line() {}
Line(Point _a,Point _b): a(_a),b(_b) {}
};
int cmpk(Line A,Line B) {
LL d = (A.b-A.a)^(B.b-B.a);
if(d == 0) return 0;
return d<0 ? 1 : -1;
}
int cmpval(Line A,Line B,LL x) {
LL Adx = A.b.x - A.a.x;
LL Bdx = B.b.x - B.a.x;
LL l,r;
if(Adx == 0 && Bdx == 0) {
l = max(A.a.y,A.b.y);
r = max(B.a.y,B.b.y);
}
else if(Adx == 0) {
l = Bdx * max(A.a.y,A.b.y);
r = ((x-B.b.x)*(B.b.y-B.a.y) + B.b.y * Bdx);
}
else if(Bdx == 0) {
l = ((x-A.b.x)*(A.b.y-A.a.y) + A.b.y * Adx);
r = Adx * max(B.a.y,B.b.y);
}
else {
l = Bdx * ((x-A.b.x)*(A.b.y-A.a.y) + A.b.y * Adx);
r = Adx * ((x-B.b.x)*(B.b.y-B.a.y) + B.b.y * Bdx);
}
if(l == r) return 0;
return l<r?-1:1;
}
vector<Line> L;
struct seg {
int l,r;
int id;
}tree[SZ * 4];
void build(int p,int l,int r) {
tree[p].l = l;
tree[p].r = r;
tree[p].id = 0;
if(l == r) return ;
int mid = l + r >> 1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
}
void add_line(int p,int id) {
// printf("[%d %d] %d %d
",tree[p].l,tree[p].r,tree[p].id,id);
if(tree[p].l == tree[p].r) {
if(tree[p].id == 0 ||
cmpval(L[tree[p].id],L[id],tree[p].l) < 0 ||
(cmpval(L[tree[p].id],L[id],tree[p].l) == 0 && tree[p].id > id) )
tree[p].id = id;
// cout << tree[p].id << endl;
return ;
}
int mid = tree[p].l + tree[p].r >>1;
if(tree[p].id == 0) tree[p].id = id;
else {
Line a = L[tree[p].id];
Line b = L[id];
//if(cmpk(a,b) == 0 && cmpval(a,b,tree[p].l) == 0) { return ; }
// if(cmpval(a,b,tree[p].l) <= 0 && cmpval(a,b,tree[p].r) <= 0) { tree[p].id = id; return ;}
// if(cmpval(a,b,tree[p].l) >= 0 && cmpval(a,b,tree[p].r) >= 0) { return ;}
if(cmpk(a,b) > 0) {
if(cmpval(a,b,mid) < 0) add_line(p<<1|1,tree[p].id),tree[p].id = id;
else add_line(p<<1,id);
}
else {
if(cmpval(a,b,mid) < 0) add_line(p<<1,tree[p].id),tree[p].id = id;
else add_line(p<<1|1,id);
}
}
}
void change(int p,int l,int r,int id) {
if(l <= tree[p].l && tree[p].r <= r) {
add_line(p,id);
return ;
}
int mid = tree[p].l + tree[p].r >> 1;
if(l <= mid) change(p<<1,l,r,id);
if(mid < r) change(p<<1|1,l,r,id);
}
void update(int &ans,int t,int pos) {
if(t == 0) return ;
if(ans == 0) ans = t;
if(cmpval(L[ans],L[t],pos) < 0 ||
(cmpval(L[ans],L[t],pos) == 0 && ans > t)) ans = t;
}
int ask(int p,int x) {
// printf("[%d %d] %d
",tree[p].l,tree[p].r,tree[p].id);
if(tree[p].l == tree[p].r) return tree[p].id;
int mid = tree[p].l + tree[p].r >> 1,ans = tree[p].id;
if(x <= mid) update(ans,ask(p<<1,x),x);
else update(ans,ask(p<<1|1,x),x);
return ans;
}
const int N = 40000;
int main() {
// freopen("4097.in","r",stdin);
// freopen("my.out","w",stdout);
int m = read();
L.resize(1);
build(1,1,N);
int lstans = 0;
while(m --) {
int opt = read();
if(opt == 0) {
int x = read();
x = (x+lstans-1)%39989+1;
printf("%d
",lstans = ask(1,x));
}
else {
int x0 = read(),y0 = read();
int x1 = read(),y1 = read();
x0 = (x0+lstans-1)%39989+1;
y0 = (y0+lstans-1)%(1000000000)+1;
x1 = (x1+lstans-1)%39989+1;
y1 = (y1+lstans-1)%(1000000000)+1;
if(x0>x1) swap(x0,x1),swap(y0,y1);
// printf("%d %d %d %d
",x0,y0,x1,y1);
L.push_back(Line(Point(x0,y0),Point(x1,y1)));
change(1,x0,x1,L.size()-1);
/* double k = (1.0*y1-y0)/(x1-x0);
double b = y1-x1*k;
printf("%.3f
",5*k+b);*/
}
}
}
/**
20
1 1 4 5 4
1 1 5 5 4
0 5
*/