zoukankan      html  css  js  c++  java
  • 从头开始使用梯度下降优化在Python中实现多元线性回归(后续)

    from matplotlib import pyplot
    from mpl_toolkits.mplot3d import Axes3Dsequence_containing_x_vals = list(X_train.transpose()[0])
    sequence_containing_y_vals = list(X_train.transpose()[1])
    sequence_containing_z_vals = list(y_train)fig = pyplot.figure()
    ax = Axes3D(fig)ax.scatter(sequence_containing_x_vals, sequence_containing_y_vals,
    sequence_containing_z_vals)
    ax.set_xlabel('Living Room Area', fontsize=10)
    ax.set_ylabel('Number of Bed Rooms', fontsize=10)
    ax.set_zlabel('Actual Housing Price', fontsize=10)



    =>预测目标变量的可视化:

    # Getting the predictions...
    X_train = np.concatenate((np.ones((X_train.shape[0],1)), X_train)
    ,axis = 1)
    predictions = hypothesis(theta, X_train, X_train.shape[1] - 1)from matplotlib import pyplot
    from mpl_toolkits.mplot3d import Axes3Dsequence_containing_x_vals = list(X_train.transpose()[1])
    sequence_containing_y_vals = list(X_train.transpose()[2])
    sequence_containing_z_vals = list(predictions)fig = pyplot.figure()
    ax = Axes3D(fig)ax.scatter(sequence_containing_x_vals, sequence_containing_y_vals,
    sequence_containing_z_vals)
    ax.set_xlabel('Living Room Area', fontsize=10)
    ax.set_ylabel('Number of Bed Rooms', fontsize=10)
    ax.set_zlabel('Housing Price Predictions', fontsize=10)



    实际房价与预计房价
    1. 均方误差:4086560101.2158(以美元为单位)
    2. 均方根误差:63926.2082(以美元为单位)
    3. R均分:0.7329
  • 相关阅读:
    JavaScript--微博发布效果
    JavaScript--模拟百度搜索下拉li
    JavaScript--for in循环访问属性用"."和[ ]的区别
    JavaScript--函数中()的作用
    JavaScript--时间日期格式化封装
    【网络】Vmware虚拟机下三种网络模式配置
    【IP】DHCP介绍
    【Shell】ps -ef 和ps aux
    【基础】Pipeline
    【时间】Unix时间戳
  • 原文地址:https://www.cnblogs.com/dr-xsh/p/13211737.html
Copyright © 2011-2022 走看看