zoukankan      html  css  js  c++  java
  • 从头开始使用梯度下降优化在Python中实现多元线性回归(后续)

    from matplotlib import pyplot
    from mpl_toolkits.mplot3d import Axes3Dsequence_containing_x_vals = list(X_train.transpose()[0])
    sequence_containing_y_vals = list(X_train.transpose()[1])
    sequence_containing_z_vals = list(y_train)fig = pyplot.figure()
    ax = Axes3D(fig)ax.scatter(sequence_containing_x_vals, sequence_containing_y_vals,
    sequence_containing_z_vals)
    ax.set_xlabel('Living Room Area', fontsize=10)
    ax.set_ylabel('Number of Bed Rooms', fontsize=10)
    ax.set_zlabel('Actual Housing Price', fontsize=10)



    =>预测目标变量的可视化:

    # Getting the predictions...
    X_train = np.concatenate((np.ones((X_train.shape[0],1)), X_train)
    ,axis = 1)
    predictions = hypothesis(theta, X_train, X_train.shape[1] - 1)from matplotlib import pyplot
    from mpl_toolkits.mplot3d import Axes3Dsequence_containing_x_vals = list(X_train.transpose()[1])
    sequence_containing_y_vals = list(X_train.transpose()[2])
    sequence_containing_z_vals = list(predictions)fig = pyplot.figure()
    ax = Axes3D(fig)ax.scatter(sequence_containing_x_vals, sequence_containing_y_vals,
    sequence_containing_z_vals)
    ax.set_xlabel('Living Room Area', fontsize=10)
    ax.set_ylabel('Number of Bed Rooms', fontsize=10)
    ax.set_zlabel('Housing Price Predictions', fontsize=10)



    实际房价与预计房价
    1. 均方误差:4086560101.2158(以美元为单位)
    2. 均方根误差:63926.2082(以美元为单位)
    3. R均分:0.7329
  • 相关阅读:
    Codeforces 877 C. Slava and tanks
    Codeforces 877 D. Olya and Energy Drinks
    2017 10.25 NOIP模拟赛
    2017 国庆湖南 Day1
    UVA 12113 Overlapping Squares
    学大伟业 国庆Day2
    51nod 1629 B君的圆锥
    51nod 1381 硬币游戏
    [JSOI2010]满汉全席
    学大伟业 2017 国庆 Day1
  • 原文地址:https://www.cnblogs.com/dr-xsh/p/13211737.html
Copyright © 2011-2022 走看看