![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
//#include <algorithm> namespace Geometry { #define eps (1e-8) class point { public: double x, y; point() {} point(const point &p): x(p.x), y(p.y) {} point(double a, double b): x(a), y(b) {} point operator + (const point & p)const { point ret; ret.x = x + p.x, ret.y = y + p.y; return ret; } point operator - (const point & p)const { point ret; ret.x = x - p.x, ret.y = y - p.y; return ret; } //dot product double operator * (const point & p)const { return x * p.x + y * p.y; } //cross product double operator ^ (const point & p)const { return x * p.y - p.x * y; } bool operator < (const point & p)const { if (fabs(x - p.x) < eps) { return y < p.y; } return x < p.x; } double mold() { return sqrt(x * x + y * y); } }; double cp(point a, point b, point o) { return (a - o) ^ (b - o); } double dp(point a, point b, point o) { return (a - o) * (b - o); } class line { public: point A, B; line() {} line(point a, point b): A(a), B(b) {} bool IsLineCrossed(const line &l)const { point v1, v2; double c1, c2; v1 = B - A, v2 = l.A - A; c1 = v1 ^ v2; v2 = l.B - A; c2 = v1 ^ v2; if (c1 * c2 >= 0) { return false; } v1 = l.B - l.A, v2 = A - l.A; c1 = v1 ^ v2; v2 = B - l.A; c2 = v1 ^ v2; if (c1 * c2 >= 0) { return false; } return true; } }; /* ** get the convex closure of dot set,store in array s. ** return the amount of the dot in the convex closure */ int Graham(point * p, point * s, int n) { std::sort(p, p + n); int top, m; s[0] = p[0]; s[1] = p[1]; top = 1; for (int i = 2; i < n; i++) { while (top > 0 && cp(p[i], s[top], s[top - 1]) >= 0) { top--; } s[++top] = p[i]; } m = top; s[++top] = p[n - 2]; for (int i = n - 3; i >= 0; i--) { while (top > m && cp(p[i], s[top], s[top - 1]) >= 0) { top--; } s[++top] = p[i]; } return top; } int dcmp(double x) { if (x < -eps) { return -1; } else { return (x > eps); } } //if the point p0 on the segment consists of point p1 and p2 int PointOnSegment(point p0, point p1, point p2) { return dcmp(cp(p1, p2, p0)) == 0 && dcmp(dp(p1, p2, p0)) <= 0; } /* ** if the point pt in polygon consists of the dots in array p ** 0:outside ** 1:inside ** 2:on the border */ int PointInPolygon(point pt, point * p, int n) { int i, k, d1, d2, wn = 0; p[n] = p[0]; for (i = 0; i < n; i++) { if (PointOnSegment(pt, p[i], p[i + 1])) { return 2; } k = dcmp(cp(p[i + 1], pt, p[i])); d1 = dcmp(p[i + 0].y - pt.y); d2 = dcmp(p[i + 1].y - pt.y); if (k > 0 && d1 <= 0 && d2 > 0) { wn++; } if (k < 0 && d2 <= 0 && d1 > 0) { wn--; } } return wn != 0 ? 1 : 0; } } //using namespace Geometry;