zoukankan      html  css  js  c++  java
  • BZOJ 4503 两个串

    思路

    我们定义一个函数,(F(x,y)=(a_x-b_y)^2 b_y),使得有通配符的时候和相等的时候都为0

    [egin{align}&sum_{i=0}^{n-m}sum_{j=0}^{m-1} (a_{i+j}-b_j)^2b_j\=&sum_{i=0}^{n-m}sum_{j=0}^{m-1} (a_{i+j}^2-2a_{i+j}b_j+b_j^2)b_j\=&sum_{i=0}^{n-m}sum_{j=0}^{m-1} a_{i+j}^2b_j-2a_{i+j}b_j^2+b_j^3\=&sum_{i=0}^{n-m}sum_{j=0}^{m-1} a_{i+j}^2b_j-sum_{j=0}^{m-1}2a_{i+j}b_j^2+sum_{j=0}^{m-1}b_j^3end{align} ]

    尝试把b翻转一下

    [egin{align}&sum_{i=0}^{n-m}sum_{j=0}^{m-1} (a_{i+j}-b_{m-j-1})^2b_{m-j-1}\=&sum_{i=0}^{n-m}sum_{j=0}^{m-1} (a_{i+j}^2-2a_{i+j}b_{m-j-1}+b_{m-j-1}^2)b_{m-j-1}\=&sum_{i=0}^{n-m}sum_{j=0}^{m-1} a_{i+j}^2b_{m-j-1}-2a_{i+j}b_{m-j-1}^2+b_{m-j-1}^3\=&sum_{i=0}^{n-m}sum_{j=0}^{m-1} a_{i+j}^2b_{m-j-1}-sum_{i=0}^{n-m}sum_{j=0}^{m-1}2a_{i+j}b_{m-j-1}^2+sum_{i=0}^{n-m}sum_{j=0}^{m-1}b_{m-j-1}^31end{align} ]

    枚举(m+i-1),就变成卷积了
    把三个式子分别卷起来

    代码

    #include <cstdio>
    #include <algorithm>
    #include <cstring>
    #define int long long
    using namespace std;
    const int MAXN = 300000;
    const int MOD = 998244353;
    const int G = 3;
    const int invG = 332748118;
    int rev[MAXN];
    void cal_rev(int n,int lim){
        for(int i=0;i<n;i++)
            rev[i]=(rev[i>>1]>>1)|((i&1)<<(lim-1));
    }
    int pow(int a,int b){
        int ans=1;
        while(b){
            if(b&1)
                ans=(1LL*ans*a)%MOD;
            a=(1LL*a*a)%MOD;
            b>>=1;
        }
        return ans;
    }
    void NTT(int *a,int opt,int n,int lim){
        for(int i=0;i<n;i++)    
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int i=2;i<=n;i<<=1){
            int len=i/2,tmp=pow((opt)?G:invG,(MOD-1)/i);
            for(int j=0;j<n;j+=i){
                int arr=1;
                for(int k=j;k<j+len;k++){
                    int t=(1LL*a[k+len]*arr)%MOD;
                    a[k+len]=(a[k]-t+MOD)%MOD;
                    a[k]=(a[k]+t)%MOD;
                    arr=(1LL*arr*tmp)%MOD;
                }
            }
        }
        if(!opt){
            int invN=pow(n,MOD-2);
            for(int i=0;i<n;i++)
                a[i]=(1LL*a[i]*invN)%MOD;
        }
    }
    int s[MAXN],t[MAXN],x[MAXN],a[MAXN],b[MAXN],c[MAXN],n,m,ans[MAXN],cnt;
    char S[MAXN];
    signed main(){
        scanf("%s",S);
        n=strlen(S);
        for(int i=0;i<n;i++){
            s[i]=(S[i]=='?')?0:S[i]-'a'+1;
            x[i]=1;
        }
        scanf("%s",S);
        m=strlen(S);
        for(int i=0;i<m;i++)
            t[i]=(S[i]=='?')?0:S[i]-'a'+1;
        reverse(t,t+m);
        int midlen=1,midlim=0;
        while(midlen<(n+m))
            midlen<<=1,midlim++;
        cal_rev(midlen,midlim);
    
        for(int i=0;i<midlen;i++)
            b[i]=1;
        for(int i=0;i<midlen;i++)
            a[i]=(t[i]*t[i]*t[i])%MOD;
        NTT(b,1,midlen,midlim);
        NTT(a,1,midlen,midlim);
        for(int i=0;i<midlen;i++)
            c[i]=(a[i]*b[i])%MOD;
    
        for(int i=0;i<midlen;i++)
            b[i]=(2*s[i])%MOD;
        for(int i=0;i<midlen;i++)
            a[i]=(t[i]*t[i])%MOD;
        NTT(b,1,midlen,midlim);
        NTT(a,1,midlen,midlim);
        for(int i=0;i<midlen;i++)
            c[i]=(c[i]-a[i]*b[i]+MOD)%MOD;
    
        for(int i=0;i<midlen;i++)
            b[i]=(s[i]*s[i])%MOD;
        for(int i=0;i<midlen;i++)
            a[i]=(t[i])%MOD;
        NTT(b,1,midlen,midlim);
        NTT(a,1,midlen,midlim);
        for(int i=0;i<midlen;i++)
            c[i]=(c[i]+a[i]*b[i])%MOD;
        
        NTT(c,0,midlen,midlim);
    
        // for(int i=0;i<midlen;i++)
        //     printf("!%lld
    ",c[i]);
        for(int i=m-1;i<n;i++)
            if(!c[i])
                ans[++cnt]=i-m+1;
        printf("%lld
    ",cnt);
        for(int i=1;i<=cnt;i++)
            printf("%lld
    ",ans[i]);
        return 0;
    }
    
  • 相关阅读:
    判断是否IPv6网络
    Makefile使用库
    Makefile编译
    Makefile编译库
    lua定义一个简单的类
    c++ 注册类到 lua
    redis的安装
    yield return的作用
    使用boost的asio,io_service无法初始化
    apache+php+mysql的配置(转载)
  • 原文地址:https://www.cnblogs.com/dreagonm/p/10757618.html
Copyright © 2011-2022 走看看