zoukankan      html  css  js  c++  java
  • pandas: powerful Python data analysis toolkit

    pandas.read_csv

    pandas.read_csv(filepath_or_buffersep=''delimiter=Noneheader='infer'names=Noneindex_col=Noneusecols=Nonesqueeze=Falseprefix=Nonemangle_dupe_cols=Truedtype=Noneengine=Noneconverters=Nonetrue_values=Nonefalse_values=Noneskipinitialspace=Falseskiprows=Nonenrows=Nonena_values=Nonekeep_default_na=Truena_filter=Trueverbose=Falseskip_blank_lines=Trueparse_dates=Falseinfer_datetime_format=Falsekeep_date_col=Falsedate_parser=Nonedayfirst=Falseiterator=Falsechunksize=Nonecompression='infer'thousands=Nonedecimal='.'lineterminator=Nonequotechar='"'quoting=0escapechar=Nonecomment=Noneencoding=Nonedialect=Nonetupleize_cols=Falseerror_bad_lines=Truewarn_bad_lines=Trueskipfooter=0skip_footer=0doublequote=Truedelim_whitespace=Falseas_recarray=Falsecompact_ints=Falseuse_unsigned=Falselow_memory=Truebuffer_lines=Nonememory_map=Falsefloat_precision=None)[source]

    Read CSV (comma-separated) file into DataFrame

    dataframe = pandas.read_csv('water_demand2009.csv',header =None, usecols=None, engine='python', skipfooter=0)

    Parameters:

    filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

    header : int or list of ints, default ‘infer’

    • Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. 

    usecols : array-like, default None

    • Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]. Using this parameter results in much faster parsing time and lower memory usage.

    engine : {‘c’, ‘python’}, optional

    • Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

    skipfooter : int, default 0

    • Number of lines at bottom of file to skip (Unsupported with engine=’c’)

    Returns: result : DataFrame or TextParser

     

  • 相关阅读:
    python_ 学习笔记(hello world)
    python_ 学习笔记(运算符)
    MySQL-联合查询
    MySQL-date和datetime
    python_ 学习笔记(基本数据类型)
    python_ 学习笔记(基础语法)
    Visaul Studio 常用快捷键的动画演示
    IIS日志-网站运维的好帮手
    浅谈反射机制
    SQL Server 数据库优化文章
  • 原文地址:https://www.cnblogs.com/dreamafar/p/6227576.html
Copyright © 2011-2022 走看看