zoukankan      html  css  js  c++  java
  • pandas: powerful Python data analysis toolkit

    pandas.read_csv

    pandas.read_csv(filepath_or_buffersep=''delimiter=Noneheader='infer'names=Noneindex_col=Noneusecols=Nonesqueeze=Falseprefix=Nonemangle_dupe_cols=Truedtype=Noneengine=Noneconverters=Nonetrue_values=Nonefalse_values=Noneskipinitialspace=Falseskiprows=Nonenrows=Nonena_values=Nonekeep_default_na=Truena_filter=Trueverbose=Falseskip_blank_lines=Trueparse_dates=Falseinfer_datetime_format=Falsekeep_date_col=Falsedate_parser=Nonedayfirst=Falseiterator=Falsechunksize=Nonecompression='infer'thousands=Nonedecimal='.'lineterminator=Nonequotechar='"'quoting=0escapechar=Nonecomment=Noneencoding=Nonedialect=Nonetupleize_cols=Falseerror_bad_lines=Truewarn_bad_lines=Trueskipfooter=0skip_footer=0doublequote=Truedelim_whitespace=Falseas_recarray=Falsecompact_ints=Falseuse_unsigned=Falselow_memory=Truebuffer_lines=Nonememory_map=Falsefloat_precision=None)[source]

    Read CSV (comma-separated) file into DataFrame

    dataframe = pandas.read_csv('water_demand2009.csv',header =None, usecols=None, engine='python', skipfooter=0)

    Parameters:

    filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

    header : int or list of ints, default ‘infer’

    • Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. 

    usecols : array-like, default None

    • Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]. Using this parameter results in much faster parsing time and lower memory usage.

    engine : {‘c’, ‘python’}, optional

    • Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

    skipfooter : int, default 0

    • Number of lines at bottom of file to skip (Unsupported with engine=’c’)

    Returns: result : DataFrame or TextParser

     

  • 相关阅读:
    各种排序算法时间复杂度和空间复杂度表
    where 1=1和 0=1 的作用
    scala map操作 简单总结
    Scala详解---------数组、元组、映射
    Scala之String
    scala object 转Class Scala强制 类型转换
    Scala中的None,Nothing,Null,Nil
    mysql如何更新一个表中的某个字段值等于另一个表的某个字段值
    java.lang.String cannot be cast to scala.runtime.Nothing Scala中的Nothing类型
    mybatis 于 hibernate区别
  • 原文地址:https://www.cnblogs.com/dreamafar/p/6227576.html
Copyright © 2011-2022 走看看