zoukankan      html  css  js  c++  java
  • pandas: powerful Python data analysis toolkit

    pandas.read_csv

    pandas.read_csv(filepath_or_buffersep=''delimiter=Noneheader='infer'names=Noneindex_col=Noneusecols=Nonesqueeze=Falseprefix=Nonemangle_dupe_cols=Truedtype=Noneengine=Noneconverters=Nonetrue_values=Nonefalse_values=Noneskipinitialspace=Falseskiprows=Nonenrows=Nonena_values=Nonekeep_default_na=Truena_filter=Trueverbose=Falseskip_blank_lines=Trueparse_dates=Falseinfer_datetime_format=Falsekeep_date_col=Falsedate_parser=Nonedayfirst=Falseiterator=Falsechunksize=Nonecompression='infer'thousands=Nonedecimal='.'lineterminator=Nonequotechar='"'quoting=0escapechar=Nonecomment=Noneencoding=Nonedialect=Nonetupleize_cols=Falseerror_bad_lines=Truewarn_bad_lines=Trueskipfooter=0skip_footer=0doublequote=Truedelim_whitespace=Falseas_recarray=Falsecompact_ints=Falseuse_unsigned=Falselow_memory=Truebuffer_lines=Nonememory_map=Falsefloat_precision=None)[source]

    Read CSV (comma-separated) file into DataFrame

    dataframe = pandas.read_csv('water_demand2009.csv',header =None, usecols=None, engine='python', skipfooter=0)

    Parameters:

    filepath_or_buffer : str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

    header : int or list of ints, default ‘infer’

    • Row number(s) to use as the column names, and the start of the data. Default behavior is as if set to 0 if no names passed, otherwise None. 

    usecols : array-like, default None

    • Return a subset of the columns. All elements in this array must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in names or inferred from the document header row(s). For example, a valid usecols parameter would be [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]. Using this parameter results in much faster parsing time and lower memory usage.

    engine : {‘c’, ‘python’}, optional

    • Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

    skipfooter : int, default 0

    • Number of lines at bottom of file to skip (Unsupported with engine=’c’)

    Returns: result : DataFrame or TextParser

     

  • 相关阅读:
    在linux中安装JAVA的环境和安卓的环境(1)
    如何安装Tomcat
    Android开发历程_2(实现简单的乘法计算)
    Android开发历程_1(从1个activity跳转到另一个activity)
    Java 征途:行者的地图
    android系统架构之虚拟机
    Android四大组件及生命周期
    GridView属性大全
    安卓中各种用到的监听器
    移动端控制台排查方法
  • 原文地址:https://www.cnblogs.com/dreamafar/p/6227576.html
Copyright © 2011-2022 走看看