zoukankan      html  css  js  c++  java
  • 1044 Shopping in Mars (25 分)

    Shopping in Mars is quite a different experience. The Mars people pay by chained diamonds. Each diamond has a value (in Mars dollars M$). When making the payment, the chain can be cut at any position for only once and some of the diamonds are taken off the chain one by one. Once a diamond is off the chain, it cannot be taken back. For example, if we have a chain of 8 diamonds with values M$3, 2, 1, 5, 4, 6, 8, 7, and we must pay M$15. We may have 3 options:

    1. Cut the chain between 4 and 6, and take off the diamonds from the position 1 to 5 (with values 3+2+1+5+4=15).
    2. Cut before 5 or after 6, and take off the diamonds from the position 4 to 6 (with values 5+4+6=15).
    3. Cut before 8, and take off the diamonds from the position 7 to 8 (with values 8+7=15).

    Now given the chain of diamond values and the amount that a customer has to pay, you are supposed to list all the paying options for the customer.

    If it is impossible to pay the exact amount, you must suggest solutions with minimum lost.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 numbers: N (≤), the total number of diamonds on the chain, and M (≤), the amount that the customer has to pay. Then the next line contains N positive numbers D1​​DN​​ (Di​​103​​ for all ,) which are the values of the diamonds. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print i-j in a line for each pair of i ≤ j such that Di + ... + Dj = M. Note that if there are more than one solution, all the solutions must be printed in increasing order of i.

    If there is no solution, output i-j for pairs of i ≤ j such that Di + ... + Dj > with (Di + ... + Dj −) minimized. Again all the solutions must be printed in increasing order of i.

    It is guaranteed that the total value of diamonds is sufficient to pay the given amount.

    Sample Input 1:

    16 15
    3 2 1 5 4 6 8 7 16 10 15 11 9 12 14 13
     

    Sample Output 1:

    1-5
    4-6
    7-8
    11-11
     

    Sample Input 2:

    5 13
    2 4 5 7 9
     

    Sample Output 2:

    2-4
    4-5

    题意:
    给出一串序列,求出等于所给值的连续子列,若没有,则求出大于且相差最小的连续子列。
    题解:
    用minn来存储大于等于所给值的连续子列和的最小值,用一维数组存储起点的终点。

    代码一:时间复杂度O(n^2)
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=100010;
    int dia[maxn],num=0;
    int endx[maxn],sum[maxn];//endx用来保存起点的终点
    int main(){
        int n,m,a,b;
        fill(endx,endx+maxn,0);
        scanf("%d %d",&n,&m);
        for(int i=1;i<=n;i++){
            scanf("%d",&dia[i]);
        }
        int minn=0x3fffffff;//minn为不小于m的最小值
        for(int i=1;i<=n;i++){
            num=0;
            for(int j=i;j<=n;j++){
                num+=dia[j];
                if(num>=m){
                    sum[i]=num;
                    endx[i]=j;//起点i的终点为j
                    if(num<minn){
                        minn=num;
                    }
                    break;
                }
            }
        }
        for(int i=1;i<=n;i++){
            if(sum[i]==minn){
                printf("%d-%d
    ",i,endx[i]);
            }
        }
        system("pause");//让程序暂停,防止一闪而过
        return 0;
    }

    有两个测试点超时

    代码二:二分法 ,时间复杂度O(nlogn)

     dia数组满足递增,所以可以用二分法查找右边界

    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=100010;
    int dia[maxn],dis[maxn];//dis保存右边界
    vector<int> vec;
    int twofen(int i,int n,int m){
        int left=i+1;
        int right=n;
        int mid;
        while(left<right){
            mid=(left+right)/2;
            if(dia[mid]-dia[i]>=m){
                right=mid;
            }
            else{
                left=mid+1;
            }
        }
        dis[i]=right;//记录右边界
        return dia[right]-dia[i];//返回最接近m的值
    }
    int main(){
        int n,m;
        scanf("%d %d",&n,&m);
        dia[0]=0;
        for(int i=1;i<=n;i++){
            scanf("%d",&dia[i]);
            dia[i]=dia[i]+dia[i-1];//dia保存到0位置的序列和
        }
        int res;
        int minn=0x3fffffff;
        for(int i=0;i<n;i++){
            res=twofen(i,n,m);
            if(res>=m)
            {
                if(res==minn){
                    vec.push_back(i);
                }
                else if(res<minn){
                    minn=res;
                    vec.clear();
                    vec.push_back(i);
                }
            }
            else{
                break;
            }
        }
        for(int i=0;i<vec.size();i++){
            printf("%d-%d
    ",vec[i]+1,dis[vec[i]]);
        }
        system("pause");
        return 0;
    }


  • 相关阅读:
    不同的ospf进程发布互联网段可以互通
    大数分解
    主席树(非权值)
    块状数组
    Codeforces Round #744 (Div. 3) G. Minimal Coverage
    记录一种从天而降的掌法(动态维护中位数的方法)
    快速统计二进制中1的数量
    网络流(小常数)
    矩阵快速幂
    米勒罗宾素性检验
  • 原文地址:https://www.cnblogs.com/dreamzj/p/14394538.html
Copyright © 2011-2022 走看看