zoukankan      html  css  js  c++  java
  • 1115 Counting Nodes in a BST (30 分)

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    • The left subtree of a node contains only nodes with keys less than or equal to the node's key.
    • The right subtree of a node contains only nodes with keys greater than the node's key.
    • Both the left and right subtrees must also be binary search trees.

    Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (≤) which is the size of the input sequence. Then given in the next line are the N integers in [ which are supposed to be inserted into an initially empty binary search tree.

    Output Specification:

    For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:

    n1 + n2 = n
     

    where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.

    Sample Input:

    9
    25 30 42 16 20 20 35 -5 28
     

    Sample Output:

    2 + 4 = 6
     
    #include<bits/stdc++.h>
    using namespace std;
    const int maxn=1010;
    #define esp 1e-8
    #define inf 0x3fffffff
    vector<int> v;
    typedef struct t{
        int data;
        int level;
        struct t *lchild,*rchild;
    }node,*nd;
    nd bulid(nd tree,int temp){
        if(tree==NULL){
            tree=new node;
            tree->data=temp;
            tree->lchild=tree->rchild=NULL;
        }else if(temp<=tree->data){
            tree->lchild=bulid(tree->lchild,temp);
        }
        else{
            tree->rchild=bulid(tree->rchild,temp);
        }
        return tree;
    }
    int maxdepth=-1;
    void dfs(nd tree,int depth){
        if(tree==NULL){
            maxdepth=max(depth,maxdepth);
            return ;
        }
        v[depth]++;
        dfs(tree->lchild,depth+1);
        dfs(tree->rchild,depth+1);
    }
    
    int main(){
        nd tree=NULL;
        int n,temp;
        cin>>n;
        v.resize(n);
        for(int i=0;i<n;i++){
            scanf("%d",&temp);
            tree=bulid(tree,temp);
        }
        dfs(tree,0);
        printf("%d + %d = %d
    ",v[maxdepth-1],v[maxdepth-2],v[maxdepth-1]+v[maxdepth-2]);
        return 0;
    }
     
  • 相关阅读:
    Appium安装教程
    方法(method)和函数(function)有什么区别?
    FTP两种工作模式:主动模式(Active FTP)和被动模式介绍
    python socket编程介绍
    面向对象基础篇
    python fishc.homework2
    python遇到的问题汇总
    我对 python 面向对象的理解
    深入理解JVM(五)JVM优化策略
    深入理解JVM(四)JVM性能监控与故障处理工具
  • 原文地址:https://www.cnblogs.com/dreamzj/p/14440370.html
Copyright © 2011-2022 走看看