For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174
-- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767
, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (.
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000
. Else print each step of calculation in a line until 6174
comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
#include<bits/stdc++.h> using namespace std; const int maxn=1010; #define inf 0x3fffffff int number[4]; bool cmp(int a,int b){ return a>b; } void tran(int n){ int i=0; while(n!=0){ number[i]=n%10; n/=10; i++; } } void init(){ for(int i=0;i<=4;i++){ number[i]=0; } } int main(){ int m; scanf("%d",&m); if(m==0){ printf("0000 - 0000 = 0000 "); return 0; } if(m==6174){ m=7641; } int n=m; tran(n); while(true){ if(n==6174||n==0){ break; } init(); tran(n); sort(number,number+4,cmp); int num1=0; for(int i=0;i<4;i++){ num1=num1*10+number[i]; } sort(number,number+4); int num2=0; for(int i=0;i<4;i++){ num2=num2*10+number[i]; } n=num1-num2; printf("%04d - %04d = %04d ",num1,num2,n); } return 0; } //注意:0,1,11,111,1000,6174