zoukankan      html  css  js  c++  java
  • hbase(0.94) get、scan源码分析

    简介

    本文是需要用到hbase timestamp性质时研究源码所写.内容有一定侧重.且个人理解不算深入,如有错误请不吝指出.

    如何看源码

    hbase依赖很重,没有独立的client包.所以目前如果在maven中指定如下:

    <dependency>
    	<groupId>org.apache.hbase</groupId>
    	<artifactId>hbase</artifactId>
    	<version>0.94-adh3u9.9</version>
    	<exclusions>
    		<exclusion>
    			<groupId>org.jruby</groupId>
    			<artifactId>jruby-complete</artifactId>
    		</exclusion>
    		<exclusion>
    			<groupId>org.slf4j</groupId>
    			<artifactId>slf4j-log4j12</artifactId>
    		</exclusion>
    	</exclusions>
    </dependency>
    

    可以看到其会把整个hbase的源码都下载下来.这一点在查看源码上是比较方便的.

    入口

    本文以get为例.代码的入口位于org.apache.hadoop.hbase.client.HTable的get方法:

      public Result get(final Get get) throws IOException {
        try {
        startTrace(get);
        ServerCallable<Result> serverCallable = new ServerCallable<Result>(
            connection, tableName, get.getRow(), operationTimeout) {
          public Result call() throws IOException {
            // rpc调用服务端进行查询
            return server.get(location.getRegionInfo().getRegionName(), get);
          }
        };
        return executeServerCallable(serverCallable);
        } finally {
          endTrace(TableOperationMetricType.GET, 1);
        }
      }
    

    其中在实际执行server.get时,会通过反射调用一个rpc接口真正和服务器进行沟通.所以如果把断点打在这个函数的里面,会发现无法断住.

    路由

    这里其实有一个很重要的问题.就是在执行get的时候.用户只会传入rowkey等信息,这里hbase是如何根据rowkey确认该数据所在region的.由上述代码可见location.getRegionInfo().getRegionName()即获取到了regionname.这一块的细节逻辑未深入研究.

    regionserver逻辑

      public Result get(byte[] regionName, Get get) throws IOException {
        checkOpen();
        final long startTime = System.nanoTime();
        ReadMetricsData metricsData = null;
        try {
          // 确认当前请求真正的region
          HRegion region = getRegion(regionName);
          checkReadEnabled(region.getTableDesc().getNameAsString());
          HBaseServer.setRegionInfoForCurCall(region.getRegionInfo()
              .getTableNameAsString(), region.getRegionInfo().getEncodedName());
          if (!region.getRegionInfo().isMetaTable()) {
            metricsData = new ReadMetricsData();
            ReadMetricsData.setCurReadMetricsData(metricsData);
          }
          // 真正执行查询,第二个参数是一个递增的整数.用于实现mvcc,即多版本并发控制
          // 简单描述就是查询时会依靠这个数字来确定读取的数据版本,避免出现读取put
          // 多个列、列族时,get到其插入一半的数据.
          Result r = region.get(get, getLockFromId(get.getLockId()));
          if (get.isSupportEncodingResult()) {
            r.setKVEncoding(KVEncoding.FASTPREFIX);
          }
          int dataLen = (int) r.getWritableSize();
          long took = System.nanoTime() - startTime;
          this.addReadMetricsCount(region, dataLen,
              HBaseServer.getRemoteAddress(), 1, (int) (took / MS_CONVERTTO_NS));
          if (metricsData != null) {
            this.metrics.getLatencies.updateReadMetricsData(metricsData, took);
          }
          return r;
        } catch (Throwable t) {
          this.metrics.failedReadRequests.inc();
          throw convertThrowableToIOE(cleanup(t));
        } finally {
          ReadMetricsData.setCurReadMetricsData(null);
        }
      }
    

    region逻辑

    上文代码最终会调用:HRegion.get(Get get, boolean withCoprocessor)方法.

      private List<KeyValue> get(Get get, boolean withCoprocessor)
      throws IOException {
        long now = EnvironmentEdgeManager.currentTimeMillis();
    
        List<KeyValue> results = new ArrayList<KeyValue>();
    
        // pre-get CP hook
        // Coprocessor 为hbase中的协处理器概念.其可由clinet发往hbaseserver,在执行put、get前后
        // 执行一些逻辑.如进行简单运算、筛选.
        if (withCoprocessor && (coprocessors != null)) {
           if (coprocessors.preGet(get, results)) {
             return results;
           }
        }
    
        // 注意这里.所有的get都会转化为一个scan
        Scan scan = new Scan(get);
    
        RegionScanner scanner = null;
        try {
          // 构造scanner
          scanner = getScanner(scan);
          // 从scanner中取出数据放入results
          scanner.next(results);
        } finally {
          if (scanner != null)
            scanner.close();
        }
    
        // post-get CP hook
        // 协处理器的后置处理调用
        if (withCoprocessor && (coprocessors != null)) {
          coprocessors.postGet(get, results);
        }
    
        // do after lock
        final long after = EnvironmentEdgeManager.currentTimeMillis();
        this.opMetrics.updateGetMetrics(get.familySet(), after - now);
        
        return results;
      }
    

    对于Scan scan = new Scan(get);,在scan的构造方法中可见:

      public Scan(Get get) {
        this.startRow = get.getRow();
        this.stopRow = get.getRow();
        this.filter = get.getFilter();
        this.cacheBlocks = get.getCacheBlocks();
        this.maxVersions = get.getMaxVersions();
        this.tr = get.getTimeRange();
        this.familyMap = get.getFamilyMap();
      }
    

    也就是对于一个get.实际上是把其当做一个scan进行查询的.所以这里可以推断出.一个get和一个startrow、stoprow均相同的scan,在执行效率上是不会有差异的.

    其次是关于timerange这一项.hbase中一个get、scan.可以设置timerange或者timestamp.其中timerange是指只查询某个时间范围的数据.而timestamp是指只查询某个时间点的数据.

    而如果不设置,则会默认查询所有数据.这一块的逻辑实现就在get、scan的构造方法和set方法中.

    • 如果用户没有setTimeStamp、setTimeRange

      // get、scan均会调用默认无参数构造方法构造其tr.
      private TimeRange tr = new TimeRange();
      
    • 如果用户进行了设置

        public Get setTimeRange(long minStamp, long maxStamp)
        throws IOException {
          tr = new TimeRange(minStamp, maxStamp);
          return this;
        }
      
        public Get setTimeStamp(long timestamp) {
          try {
            tr = new TimeRange(timestamp, timestamp+1);
          } catch(IOException e) {
            // Will never happen
          }
          return this;
        }
      

    可见timestamp是一种特殊的timerange,其构造方法为[timestamp,timestamp+1)的range.

    scanner存在的意义

    hbase的scanner并非为了使用设计模式而强行加入一个scanner做数据查询.这里的scanner的必要性主要在于其逻辑、物理存储特性.这里简单描述就是,在hbase中一个region是由多个store的.每个store才是真正的存储的逻辑最小单元.而一个store里面又有一个memstore(内存),零个或多个storefile(一般是位于HDFS的HFile文件).

    由此,有个很明显的问题:在用户的一次查询中,用户的输入是一个rowkey,而这个rowkey的不同列族的数据,可能在不同的store中.而即使确定了一个store,可能数据在memstore中(尚未flush到硬盘),也有可能已经在storefile中了.

    进一步也就需要一个机制从这些不同的逻辑、物理的存储媒介中遍历查询数据并且做一个合并.

    scanner 的构造

    暂无

    scanner的遍历逻辑

    上文中的scanner.next(results);最终会执行到HRegion.nextInternal(int limit)方法.

    代码:

        private boolean nextInternal(int limit) throws IOException {
          RpcCallContext rpcCall = HBaseServer.getCurrentCall();
          while (true) {
            if (rpcCall != null) {
              // If a user specifies a too-restrictive or too-slow scanner, the
              // client might time out and disconnect while the server side
              // is still processing the request. We should abort aggressively
              // in that case.
              rpcCall.throwExceptionIfCallerDisconnected();
            }
    
            KeyValue current = this.storeHeap.peek();
            byte[] currentRow = null;
            int offset = 0;
            short length = 0;
            if (current != null) {
              currentRow = current.getBuffer();
              offset = current.getRowOffset();
              length = current.getRowLength();
            }
            if (isStopRow(currentRow, offset, length)) {
              if (filter != null && filter.hasFilterRow()) {
                filter.filterRow(results);
              }
              if (filter != null && filter.filterRow()) {
                results.clear();
              }
    
              return false;
            } else if (filterRowKey(currentRow, offset, length)) {
              nextRow(currentRow, offset, length);
            } else {
              KeyValue nextKv;
              do {
                this.storeHeap.next(results, limit - results.size());
                if (limit > 0 && results.size() == limit) {
                  if (this.filter != null && filter.hasFilterRow()) {
                    throw new IncompatibleFilterException(
                      "Filter with filterRow(List<KeyValue>) incompatible with scan with limit!");
                  }
                  return true; // we are expecting more yes, but also limited to how many we can return.
                }
                nextKv = this.storeHeap.peek();
              } while (nextKv != null && nextKv.matchingRow(currentRow, offset, length));
    
              final boolean stopRow = nextKv == null || isStopRow(nextKv.getBuffer(), nextKv.getRowOffset(), nextKv.getRowLength());
    
              // now that we have an entire row, lets process with a filters:
    
              // first filter with the filterRow(List)
              if (filter != null && filter.hasFilterRow()) {
                filter.filterRow(results);
              }
    
              if (results.isEmpty() || filterRow()) {
                // this seems like a redundant step - we already consumed the row
                // there're no left overs.
                // the reasons for calling this method are:
                // 1. reset the filters.
                // 2. provide a hook to fast forward the row (used by subclasses)
                nextRow(currentRow, offset, length);
    
                // This row was totally filtered out, if this is NOT the last row,
                // we should continue on.
    
                if (!stopRow) continue;
              } else if (this.remainingOffset > 0) {
                this.remainingOffset--;
                nextRow(currentRow, offset, length);
                if (!stopRow) continue;
              }
              return !stopRow;
            }
          }
        }
    

    简化版:

        private boolean nextInternal(int limit) throws IOException {
          while (true) {
            // 获取heap顶的KeyValue
            KeyValue current = this.storeHeap.peek();
            byte[] currentRow = null;
            int offset = 0;
            short length = 0;
            if (current != null) {
              currentRow = current.getBuffer();
              offset = current.getRowOffset();
              length = current.getRowLength();
            }
            if (isStopRow(currentRow, offset, length)) {
              // 如果是结束行
              return false;
            } else if (filterRowKey(currentRow, offset, length)) {
              // 如果filter过滤掉了.则直接看下一行数据
              nextRow(currentRow, offset, length);
            } else {
              KeyValue nextKv;
              do {
                // 核心代码
                this.storeHeap.next(results, limit - results.size());
                nextKv = this.storeHeap.peek();
              } while (nextKv != null && nextKv.matchingRow(currentRow, offset, length));
            }
          }
        }
    

    这里省去了边缘控制、过滤逻辑等内容.主要关注其核心逻辑.

    全部代码中最核心的有两行:KeyValue current = this.storeHeap.peek();this.storeHeap.next(results, limit - results.size());.

    这里的storeHeap是hbase维护的一个二叉堆(优先队列).这个堆里面存储的元素,是scanner.每个scanner都会持有当前scanner目前最新的、尚未返回的keyvalue.这个二叉堆的排序方式就是根据每个scanner当前keyvalue的rowkey进行排序.

    每次执行查询的时候.首先会用KeyValue current = this.storeHeap.peek();取出堆顶的scanner的当前keyvalue.进行一些逻辑判断(主要是判断rowkey,如判断是否超过limit、是否到了stoprow、是否被filter过滤等).如果该keyvalue全部通过,也就是认为其应该被本次查询查到.会执行一次this.storeHeap.next(results, limit - results.size());注意这里才是有可能把当前keyvalue放入查询结果的地方.(不一定会放入,next方法中还有针对value的判断逻辑,比如比较timestamp是否正确).

    scanner的排序

    上文提到了scanner会依靠其当前元素rowkey进行排序.可以在类KeyValueHeap的构造方法中看到端倪.

      KeyValueHeap(List<? extends KeyValueScanner> scanners,
          KVScannerComparator comparator) throws IOException {
        this.comparator = comparator;
        if (!scanners.isEmpty()) {
          this.heap = new PriorityQueue<KeyValueScanner>(scanners.size(),
              this.comparator);
          for (KeyValueScanner scanner : scanners) {
            if (scanner.peek() != null) {
              this.heap.add(scanner);
            } else {
              scanner.close();
            }
          }
          this.current = pollRealKV();
        }
        
      }
    

    毫无疑问.从scanner中取出元素也会影响KeyValueHeap中二叉堆的排序.故其可以保证二叉堆的堆顶的scanner的当前keyvalue一直是离上个遍历到的rowkey最近的keyvalue.

    二叉堆的next逻辑

    上文中的this.storeHeap.next(results, limit - results.size());最终会执行到:StoreScanner.next(List<KeyValue> outResult, int limit).其源码很长:

      public synchronized boolean next(List<KeyValue> outResult, int limit) throws IOException {
    
        if (checkReseek()) {
          return true;
        }
    
        // if the heap was left null, then the scanners had previously run out anyways, close and
        // return.
        if (this.heap == null) {
          close();
          return false;
        }
    
        KeyValue peeked = this.heap.peek();
        if (peeked == null) {
          close();
          return false;
        }
    
        // only call setRow if the row changes; avoids confusing the query matcher
        // if scanning intra-row
        byte[] row = peeked.getBuffer();
        int offset = peeked.getRowOffset();
        short length = peeked.getRowLength();
        if ((matcher.row == null) || !Bytes.equals(row, offset, length, matcher.row, matcher.rowOffset, matcher.rowLength)) {
          matcher.setRow(row, offset, length);
        }
    
        KeyValue kv;
        KeyValue prevKV = null;
        List<KeyValue> results = new ArrayList<KeyValue>();
    
        // Only do a sanity-check if store and comparator are available.
        KeyValue.KVComparator comparator =
            store != null ? store.getComparator() : null;
    
        long cumulativeMetric = 0;
        try {
          LOOP: while ((kv = this.heap.peek()) != null) {
            // Check that the heap gives us KVs in an increasing order.
            checkScanOrder(prevKV, kv, comparator);
            prevKV = kv;
            ScanQueryMatcher.MatchCode qcode = matcher.match(kv);
            switch (qcode) {
            case INCLUDE:
            case INCLUDE_AND_SEEK_NEXT_ROW:
            case INCLUDE_AND_SEEK_NEXT_COL:
    
              Filter f = matcher.getFilter();
              results.add(f == null ? kv : f.transform(kv));
    
              if (limit > 0 && results.size() == limit) {
                if (this.mustIncludeColumn != null) {
                    throw new DoNotRetryIOException("Assistant " + this.assistant
                        + " incompatible with scan where limit=" + limit);
                }
              }
    
              if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_ROW) {
                if (!matcher.moreRowsMayExistAfter(kv)) {
                  filterRowIfMissingMustIncludeColumn(results);
                  outResult.addAll(results);
                  return false;
                }
                seekToNextRow(kv);
              } else if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_COL) {
                reseek(matcher.getKeyForNextColumn(kv));
              } else {
                this.heap.next();
              }
    
              cumulativeMetric += kv.getLength();
              if (limit > 0 && (results.size() == limit)) {
                break LOOP;
              }
              continue;
    
            case DONE:
              filterRowIfMissingMustIncludeColumn(results);
              // copy jazz
              outResult.addAll(results);
              return true;
    
            case DONE_SCAN:
              close();
              filterRowIfMissingMustIncludeColumn(results);
              // copy jazz
              outResult.addAll(results);
    
              return false;
    
            case SEEK_NEXT_ROW:
              // This is just a relatively simple end of scan fix, to
              // short-cut end
              // us if there is an endKey in the scan.
              if (!matcher.moreRowsMayExistAfter(kv)) {
                filterRowIfMissingMustIncludeColumn(results);
                outResult.addAll(results);
                return false;
              }
    
              seekToNextRow(kv);
              break;
    
            case SEEK_NEXT_COL:
              reseek(matcher.getKeyForNextColumn(kv));
              break;
    
            case SKIP:
              this.heap.next();
              break;
    
            case SEEK_NEXT_USING_HINT:
              KeyValue nextKV = matcher.getNextKeyHint(kv);
              if (nextKV != null) {
                reseek(nextKV);
              } else {
                heap.next();
              }
              break;
    
            default:
              throw new RuntimeException("UNEXPECTED");
            }
          }
        } finally {
          RegionMetricsStorage.incrNumericMetric(metricNameGetSize,
              cumulativeMetric);
        }
    
        if (!results.isEmpty()) {
          filterRowIfMissingMustIncludeColumn(results);
          // copy jazz
          outResult.addAll(results);
          return true;
        }
    
        // No more keys
        close();
        return false;
      }
    

    简化版:

      public synchronized boolean next(List<KeyValue> outResult, int limit) throws IOException {
    
        KeyValue peeked = this.heap.peek();
        if (peeked == null) {
          close();
          return false;
        }
    
        byte[] row = peeked.getBuffer();
        int offset = peeked.getRowOffset();
        short length = peeked.getRowLength();
        if ((matcher.row == null) || !Bytes.equals(row, offset, length, matcher.row, matcher.rowOffset, matcher.rowLength)) {
          matcher.setRow(row, offset, length);
        }
    
        KeyValue kv;
        List<KeyValue> results = new ArrayList<KeyValue>();
    
        KeyValue.KVComparator comparator =
            store != null ? store.getComparator() : null;
    
        long cumulativeMetric = 0;
        try {
          // 获取本store当前的keyvalue
          LOOP: while ((kv = this.heap.peek()) != null) {
            // 执行匹配.这里的匹配规则部分从用户的filter中来
            ScanQueryMatcher.MatchCode qcode = matcher.match(kv);
            switch (qcode) {
            case INCLUDE:
            case INCLUDE_AND_SEEK_NEXT_ROW:
            case INCLUDE_AND_SEEK_NEXT_COL:
              // 针对当前keyvalue应该包含在用户的查询结果的情况
              Filter f = matcher.getFilter();
              results.add(f == null ? kv : f.transform(kv));
    
              if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_ROW) {
                if (!matcher.moreRowsMayExistAfter(kv)) {
                  filterRowIfMissingMustIncludeColumn(results);
                  outResult.addAll(results);
                  return false;
                }
                seekToNextRow(kv);
              } else if (qcode == ScanQueryMatcher.MatchCode.INCLUDE_AND_SEEK_NEXT_COL) {
                reseek(matcher.getKeyForNextColumn(kv));
              } else {
                this.heap.next();
              }
    
              cumulativeMetric += kv.getLength();
              if (limit > 0 && (results.size() == limit)) {
                // 查到了limit的数量.跳出循环
                break LOOP;
              }
              continue;
    
            case DONE:
            case DONE_SCAN:
            case SEEK_NEXT_ROW:
            case SEEK_NEXT_COL:
            case SKIP:
            case SEEK_NEXT_USING_HINT:
            // 这些都是查询过程中的各种情况.会有针对的处理
                    
            default:
              throw new RuntimeException("UNEXPECTED");
            }
          }
        } finally {
          RegionMetricsStorage.incrNumericMetric(metricNameGetSize,
              cumulativeMetric);
        }
    
        // 放入结果中  
        if (!results.isEmpty()) {
          filterRowIfMissingMustIncludeColumn(results);
          outResult.addAll(results);
          return true;
        }
        close();
        return false;
      }
    

    上述代码可以看到整个next的核心逻辑.其实就是把当前store的当前keyvalue取出.用一个matcher做比较.看看该数据是否应该是用户查询的结果.

    查询到的数据的多种可能

    上文中的枚举值.这里举个例子.比如查询到一行数据的第一列是应该被查询到的.按理就应该查询其列族的第二列.而如果发现该行数据被删除掉了.那么不用查询其第二列了.也不用查询下个store了.应该直接查询下一行数据.

  • 相关阅读:
    给msde加装企业管理器
    InterBase 数据库与驱动 版本不同
    delphi 演示数据路径
    TNetHTTPClient 使用
    MYSQL之库操作
    MYSQL之数据操作
    MYSQL之表操作
    MYSQL之视图、触发器、存储过程、函数、事物、数据库锁和数据库备份
    数据库三范式详解
    MYSQL之索引原理与慢查询优化
  • 原文地址:https://www.cnblogs.com/dsj2016/p/10296191.html
Copyright © 2011-2022 走看看