zoukankan      html  css  js  c++  java
  • 将cifar10数据集保存为可见图片

    下载cifar10数据集:http://www.cs.toronto.edu/~kriz/cifar.html

    选择cifar-10-python.tar.gz进行下载。

    1 建立 main.py

    import tensorflow as tf
    import os
    import scipy.misc
    import cifar10_input
    
    
    
    def inputs_origin(data_dir):
        filenames = [os.path.join(data_dir, 'data_batch_%d' % i) for i in range(1, 6)]
        for f in filenames:
            print(f)
            if not tf.gfile.Exists(f):
                raise ValueError('Failed to find file' + f)
        filenames_queue =tf.train.string_input_producer(filenames)
        read_input = cifar10_input.read_cifar10(filenames_queue)
        reshaped_image = tf.cast(read_input.uint8image,tf.float32)
        print(reshaped_image)
        return reshaped_image
    
    if __name__ == '__main__':
        with tf.Session() as sess:
            reshaped_image = inputs_origin('cifar-10-batches-py')
            threads = tf.train.start_queue_runners(sess=sess)
            print(threads)
            sess.run(tf.global_variables_initializer())
            if not os.path.exists('cifar-10-batches-py/raw/'):
                os.makedirs('cifar-10-batches-py/raw/')
            for i in range(30):
                image = sess.run(reshaped_image)
                scipy.misc.toimage(image).save('cifar-10-batches-py/raw/%d.jpg' %i)

    2 建立 cifar10_input.py

    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import os
    
    from six.moves import xrange  # pylint: disable=redefined-builtin
    import tensorflow as tf
    
    # Process images of this size. Note that this differs from the original CIFAR
    # image size of 32 x 32. If one alters this number, then the entire model
    # architecture will change and any model would need to be retrained.
    IMAGE_SIZE = 24
    
    # Global constants describing the CIFAR-10 data set.
    NUM_CLASSES = 10
    NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
    NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000
    
    
    def read_cifar10(filename_queue):
      """Reads and parses examples from CIFAR10 data files.
      Recommendation: if you want N-way read parallelism, call this function
      N times.  This will give you N independent Readers reading different
      files & positions within those files, which will give better mixing of
      examples.
      Args:
        filename_queue: A queue of strings with the filenames to read from.
      Returns:
        An object representing a single example, with the following fields:
          height: number of rows in the result (32)
           number of columns in the result (32)
          depth: number of color channels in the result (3)
          key: a scalar string Tensor describing the filename & record number
            for this example.
          label: an int32 Tensor with the label in the range 0..9.
          uint8image: a [height, width, depth] uint8 Tensor with the image data
      """
    
      class CIFAR10Record(object):
        pass
    
      result = CIFAR10Record()
    
      # Dimensions of the images in the CIFAR-10 dataset.
      # See http://www.cs.toronto.edu/~kriz/cifar.html for a description of the
      # input format.
      label_bytes = 1  # 2 for CIFAR-100
      result.height = 50
      result.width = 50
      result.depth = 3
      image_bytes = result.height * result.width * result.depth
      # Every record consists of a label followed by the image, with a
      # fixed number of bytes for each.
      record_bytes = label_bytes + image_bytes
    
      # Read a record, getting filenames from the filename_queue.  No
      # header or footer in the CIFAR-10 format, so we leave header_bytes
      # and footer_bytes at their default of 0.
      reader = tf.FixedLengthRecordReader(record_bytes=record_bytes)
      result.key, value = reader.read(filename_queue)
    
      # Convert from a string to a vector of uint8 that is record_bytes long.
      record_bytes = tf.decode_raw(value, tf.uint8)
    
      # The first bytes represent the label, which we convert from uint8->int32.
      result.label = tf.cast(
          tf.strided_slice(record_bytes, [0], [label_bytes]), tf.int32)
    
      # The remaining bytes after the label represent the image, which we reshape
      # from [depth * height * width] to [depth, height, width].
      depth_major = tf.reshape(
          tf.strided_slice(record_bytes, [label_bytes],
                           [label_bytes + image_bytes]),
          [result.depth, result.height, result.width])
      # Convert from [depth, height, width] to [height, width, depth].
      result.uint8image = tf.transpose(depth_major, [1, 2, 0])
    
      return result
    
    
    def _generate_image_and_label_batch(image, label, min_queue_examples,
                                        batch_size, shuffle):
      """Construct a queued batch of images and labels.
      Args:
        image: 3-D Tensor of [height, width, 3] of type.float32.
        label: 1-D Tensor of type.int32
        min_queue_examples: int32, minimum number of samples to retain
          in the queue that provides of batches of examples.
        batch_size: Number of images per batch.
        shuffle: boolean indicating whether to use a shuffling queue.
      Returns:
        images: Images. 4D tensor of [batch_size, height, width, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
      """
      # Create a queue that shuffles the examples, and then
      # read 'batch_size' images + labels from the example queue.
      num_preprocess_threads = 16
      if shuffle:
        images, label_batch = tf.train.shuffle_batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size,
            min_after_dequeue=min_queue_examples)
      else:
        images, label_batch = tf.train.batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size)
    
      # Display the training images in the visualizer.
      tf.summary.image('images', images)
    
      return images, tf.reshape(label_batch, [batch_size])
    
    
    def distorted_inputs(data_dir, batch_size):
      """Construct distorted input for CIFAR training using the Reader ops.
      Args:
        data_dir: Path to the CIFAR-10 data directory.
        batch_size: Number of images per batch.
      Returns:
        images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
      """
      filenames = [
          os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)
      ]
      for f in filenames:
        if not tf.gfile.Exists(f):
          raise ValueError('Failed to find file: ' + f)
    
      # Create a queue that produces the filenames to read.
      filename_queue = tf.train.string_input_producer(filenames)
    
      # Read examples from files in the filename queue.
      read_input = read_cifar10(filename_queue)
      reshaped_image = tf.cast(read_input.uint8image, tf.float32)
    
      height = IMAGE_SIZE
      width = IMAGE_SIZE
    
      # Image processing for training the network. Note the many random
      # distortions applied to the image.
    
      # Randomly crop a [height, width] section of the image.
      distorted_image = tf.random_crop(reshaped_image, [height, width, 3])
    
      # Randomly flip the image horizontally.
      distorted_image = tf.image.random_flip_left_right(distorted_image)
    
      # Because these operations are not commutative, consider randomizing
      # the order their operation.
      distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
      distorted_image = tf.image.random_contrast(
          distorted_image, lower=0.2, upper=1.8)
    
      # Subtract off the mean and divide by the variance of the pixels.
      float_image = tf.image.per_image_standardization(distorted_image)
    
      # Set the shapes of tensors.
      float_image.set_shape([height, width, 3])
      read_input.label.set_shape([1])
    
      # Ensure that the random shuffling has good mixing properties.
      min_fraction_of_examples_in_queue = 0.4
      min_queue_examples = int(
          NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * min_fraction_of_examples_in_queue)
      print('Filling queue with %d CIFAR images before starting to train. '
            'This will take a few minutes.' % min_queue_examples)
    
      # Generate a batch of images and labels by building up a queue of examples.
      return _generate_image_and_label_batch(
          float_image,
          read_input.label,
          min_queue_examples,
          batch_size,
          shuffle=True)
    
    
    def inputs(eval_data, data_dir, batch_size):
      """Construct input for CIFAR evaluation using the Reader ops.
      Args:
        eval_data: bool, indicating if one should use the train or eval data set.
        data_dir: Path to the CIFAR-10 data directory.
        batch_size: Number of images per batch.
      Returns:
        images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
        labels: Labels. 1D tensor of [batch_size] size.
      """
      if not eval_data:
        filenames = [
            os.path.join(data_dir, 'data_batch_%d.bin' % i) for i in xrange(1, 6)
        ]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
      else:
        filenames = [os.path.join(data_dir, 'test_batch.bin')]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL
    
      for f in filenames:
        if not tf.gfile.Exists(f):
          raise ValueError('Failed to find file: ' + f)
    
      # Create a queue that produces the filenames to read.
      filename_queue = tf.train.string_input_producer(filenames)
    
      # Read examples from files in the filename queue.
      read_input = read_cifar10(filename_queue)
      reshaped_image = tf.cast(read_input.uint8image, tf.float32)
    
      height = IMAGE_SIZE
      width = IMAGE_SIZE
    
      # Image processing for evaluation.
      # Crop the central [height, width] of the image.
      resized_image = tf.image.resize_image_with_crop_or_pad(
          reshaped_image, width, height)
    
      # Subtract off the mean and divide by the variance of the pixels.
      float_image = tf.image.per_image_standardization(resized_image)
    
      # Set the shapes of tensors.
      float_image.set_shape([height, width, 3])
      read_input.label.set_shape([1])
    
      # Ensure that the random shuffling has good mixing properties.
      min_fraction_of_examples_in_queue = 0.4
      min_queue_examples = int(
          num_examples_per_epoch * min_fraction_of_examples_in_queue)
    
      # Generate a batch of images and labels by building up a queue of examples.
      return _generate_image_and_label_batch(
          float_image,
          read_input.label,
          min_queue_examples,
          batch_size,
          shuffle=False)
    

     显示部分图片:

     

  • 相关阅读:
    String类
    关于 this 关键字的使用
    面向对象案例
    js 保留2位小数
    label包裹input,点击label响应两次解决方法
    JQuery的datetimepicker插件,起始日期&结束日期相互约束
    JSP JSTL日常使用集锦
    js操作select用法集锦
    js利用window.print实现局部打印方法
    前端开发人员实用Chrome插件集锦
  • 原文地址:https://www.cnblogs.com/dudu1992/p/8908081.html
Copyright © 2011-2022 走看看