zoukankan      html  css  js  c++  java
  • 分布式京东全站爬取分析

    1、主要思路

      获取京东所有商品列表:https://www.jd.com/allSort.aspx,大概有分类1190条

       

      连接格式为:https://list.jd.com/list.html?cat=xxx

      页面如下:

      

       此页面可以从该页面直接获取商品价格、商品标题、商品URL、商品ID、商品品牌、商品店铺地址、商品型号,所以在获取此页面时直接解析这些数据。

      需要的数据分析:本次爬取主要获取以下信息(已评价为基础存储商品信息,可以将评价和商品分开存):

    CREATE TABLE `JDAll` (
        `shop_id` VARCHAR (16) NOT NULL,  //商品ID
        `url` VARCHAR (255) DEFAULT NULL, //商品url
        `title` VARCHAR (1024) DEFAULT NULL, //商品标题
        `brand` VARCHAR (255) DEFAULT NULL,//品牌
        `brand_url` VARCHAR (1024) DEFAULT NULL,//店铺地址
        `price` VARCHAR (16) DEFAULT NULL,//价格
        `comment_num` INT (16) DEFAULT NULL,//评价总数
        `good_comment_rate` VARCHAR (16) DEFAULT NULL,//好评率
        `good_comment` VARCHAR (16) DEFAULT NULL,//好评数
        `general_count` VARCHAR (16) DEFAULT NULL,//中评数
        `poor_count` VARCHAR (16) DEFAULT NULL,//差评数
        `hot_comment_dict` LONGTEXT,//热评信息
        `default_comment_num` VARCHAR (16) DEFAULT NULL,//默认好评数
        `comment_id` VARCHAR (32) NOT NULL,//评价ID,主键
        `comment_context` LONGTEXT,//评价内容
        `comnent_time` VARCHAR (255) DEFAULT NULL,//评价时间
        `comment_score` VARCHAR (8) DEFAULT NULL,//评价星级
        `comment_source` VARCHAR (255) DEFAULT NULL,//评价来源
        `produce_size` VARCHAR (255) DEFAULT NULL,//商品大小
        `produce_color` VARCHAR (255) DEFAULT NULL,//商品颜色
        `user_level` VARCHAR (32) DEFAULT NULL,//用户会员级别
        `user_exp` VARCHAR (32) DEFAULT NULL,//用户京享值
        `comment_thumpup` VARCHAR (8) DEFAULT NULL,//评价点赞数
        `comment_reply_content` LONGTEXT,//店家回复
        `comment_reply_time` VARCHAR (255) DEFAULT NULL,//店铺回复时间
        `append_comment` LONGTEXT,//买家追评
        `append_comment_time` VARCHAR (255) DEFAULT NULL,//追评时间
        PRIMARY KEY (`comment_id`)
    ) ENGINE = INNODB DEFAULT CHARSET = utf8
    SQL

      商品评价获取:采用京东json接口:https://club.jd.com/comment/skuProductPageComments.action?callback=fetchJSON_comment98vv46561&productId=4207732&score=0&sortType=5&page=0&pageSize=10&isShadowSku=0&fold=1

       可更改参数:productId=4207732(商品ID)、page=0(第几页评价)、pageSize=10(每页显示的条数)

       基本评价信息:

       

       热评信息:

       

       主要评价:

       

    2、代码实现

      主代码:

    # -*- coding: utf-8 -*-
    
    import os,sys
    import scrapy
    import json
    import requests
    from scrapy_splash import SplashRequest
    from scrapy.linkextractors import LinkExtractor
    # from scrapy.spiders import Rule,CrawlSpider
    from scrapy.spiders.splashcrawl import Rule,CrawlSpider
    from scrapy_redis.spiders import RedisSpider
    from ArticleSpider.items import JDAllItem
    
    lua_script = """
    function main(splash)
        splash:go(splash.args.url)
        splash:wait(0.5)
        return splash:html()
    end
    """
    
    class JdAllSpider(RedisSpider):
        name = "jd_all"
        redis_key = "jd:start_urls"
        allowed_domains = ["jd.com"]
        header = {
            'Host': 'club.jd.com',
            'Connection': 'keep-alive',
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'Upgrade-Insecure-Requests': '1',
            'User-Agent': 'Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0',
            'Accept-Encoding': 'gzip, deflate, sdch',
            'Accept-Language': 'zh-CN,zh;q=0.8',
        }
        list_header = {
            'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
            'Accept-Encoding': 'gzip, deflate, sdch',
            'Accept-Language': 'zh-CN,zh;q=0.8',
            'Cache-Control': 'max-age=0',
            'Connection': 'keep-alive',
            'Host': 'list.jd.com',
            'If-Modified-Since': 'Mon, 22 Jan 2018 06:23:20 GMT',
            'Upgrade-Insecure-Requests': '1'
        }
        # rules = {
        #     # 商品列表
        #     Rule(LinkExtractor(allow=r'https://list.jd.com/list.html?cat=.*'), follow=False,callback="parse_shop"),
        #     # 匹配商品
        #     # Rule(LinkExtractor(allow=r'.*item.jd.com/d+.html$'), callback="parse_shop",follow=True),
        #     # 匹配下一页
        #     Rule(LinkExtractor(restrict_css='a.pn-next'), follow=True,callback="parse_shop"),
        # }
        def parse(self,response):
            # 解析list链接
            pattern = "https://list.jd.com/list.html?cat=.*"
            le = LinkExtractor(allow=pattern)
            links = le.extract_links(response)
            print("发现list页面共:【%s】" %len(links))
            for i in links:
                print("-------------------->%s" %i.url)
                yield scrapy.Request(i.url,callback=self.next_page)
                #yield SplashRequest(i.url, endpoint='execute', args={'images': 0, 'lua_source': lua_script},cache_args=['lua_source'], callback=self.parse_shop)
        def next_page(self,response):
            # 获取page total
            page_total = int(response.css('span.fp-text i::text').extract_first())
            print("开始获取下一页")
            for page in range(1,page_total + 1):
                page_url = "%s&page=%s" %(response.url,page)
                print("获取list:【%s】,第【%s】页。"%(response.url, page))
                yield SplashRequest(page_url, args={'wait': 0.5, 'images': 0}, callback=self.parse_shop,splash_headers=self.header)
                # yield SplashRequest(page_url, endpoint='execute', args={'images': 0, 'lua_source': lua_script},cache_args=['lua_source'], callback=self.parse_shop,dont_filter=True)
    
        def parse_shop(self, response):
            sel_list = response.xpath('//div[@id="plist"]').xpath('.//li[@class="gl-item"]')
            for sel in sel_list:
                print("开始解析list页面,商品信息")
                url = "http:%s" %sel.css(".p-name a::attr('href')").extract_first()
                shop_id = url.split("/")[-1].split(".")[0]
                title = sel.css(".p-name a em::text").extract_first().strip("
    ").strip(" ")
                brand = sel.css(".p-shop span a::attr('title')").extract_first()
                brand_url = sel.css(".p-shop span a::attr('href')").extract_first()
                price = sel.css(".p-price strong i::text").extract_first()
                session = requests.Session()
                print("获取%s商品评价页面" %title)
                comment_url = "https://club.jd.com/comment/skuProductPageComments.action?productId={shop_id}&score=0&sortType=5&page={page_num}&pageSize=10&isShadowSku=0&fold=1".format(shop_id=shop_id,page_num=0)
                html = session.get(comment_url, headers=self.header)
                print("获取商品评价页 json")
                try:
                    comment_json = json.loads(html.text)
                except:
                    continue
                # 获取评价信息
                public_comment = comment_json['productCommentSummary']
                # 评价数
                comment_num = public_comment['commentCount']
                # 获取好评率
                good_comment_rate = public_comment['goodRate']
                # 好评数
                good_comment =public_comment['goodCount']
                # 中评数
                general_count = public_comment['generalCount']
                # 差评
                poor_count = public_comment['poorCount']
                # 默认好评
                default_comment_num = public_comment['defaultGoodCount']
                # 获取热评信息
                hot_comment = comment_json['hotCommentTagStatistics']
                if len(hot_comment) == 0:
                    hot_comment_dict = "Null"
                else:
                    hot_comment_dict = {}
                    for i in hot_comment:
                        hot_comment_dict[i['id']] = {'name': i['name'], 'count': i['count']}
                    hot_comment_dict = json.dumps(hot_comment_dict)
                shop_info = {
                    'url': url,
                    'shop_id': shop_id,
                    'title': title,
                    'brand': brand,
                    'brand_url': brand_url,
                    'price': price,
                    'comment_num': comment_num,
                    'good_comment_rate': good_comment_rate,
                    'good_comment': good_comment,
                    'general_count': general_count,
                    'poor_count': poor_count,
                    'hot_comment_dict': hot_comment_dict,
                    'default_comment_num': default_comment_num,
                }
                page_num = (comment_num + 9) // 10
                if page_num >= 100:
                    page_num = 100
                print("【%s】评价页面共计【%s】" %(title,page_num))
                for page in range(0,page_num):
                    comment_url = "https://club.jd.com/comment/skuProductPageComments.action?productId={shop_ids}&score=0&sortType=5&page={page_nums}&pageSize=10&isShadowSku=0&fold=1".format(shop_ids=shop_id,page_nums=page)
                    print("yield评价第%s页"%page)
                    yield scrapy.Request(comment_url,meta=shop_info,headers=self.header,callback=self.parse_comment)
    
    
        def parse_comment(self,response):
            print("开始解析评价")
            shop_id = response.meta.get("shop_id")
            url = response.meta.get("url")
            title = response.meta.get("title")
            brand = response.meta.get("brand")
            brand_url = response.meta.get("brand_url")
            price = response.meta.get("price")
            comment_num = response.meta.get("comment_num")
            good_comment_rate = response.meta.get("good_comment_rate")
            good_comment = response.meta.get("good_comment")
            general_count = response.meta.get("general_count")
            poor_count = response.meta.get("poor_count")
            hot_comment_dict = response.meta.get("hot_comment_dict")
            default_comment_num = response.meta.get("default_comment_num")
            try:
                comment_json = json.loads(response.text)
            except:
                shop_info = {
                    'url': url,
                    'shop_id': shop_id,
                    'title': title,
                    'brand': brand,
                    'brand_url': brand_url,
                    'price': price,
                    'comment_num': comment_num,
                    'good_comment_rate': good_comment_rate,
                    'good_comment': good_comment,
                    'general_count': general_count,
                    'poor_count': poor_count,
                    'hot_comment_dict': hot_comment_dict,
                    'default_comment_num': default_comment_num,
                }
                yield scrapy.Request(response.url,meta=shop_info,headers=self.header,callback=self.parse_comment)
            else:
                comment_info = comment_json['comments']
                for comment in comment_info:
                    JDItem = JDAllItem()
                    # 主键 评论ID
                    comment_id = comment['id']
                    comment_context = comment['content']
                    comnent_time = comment['creationTime']
                    # 用户评分
                    comment_score = comment['score']
                    # 来源
                    comment_source = comment['userClientShow']
                    if comment_source == []:
                        comment_source = "非手机端"
                    # 型号
                    try:
                        produce_size = comment['productSize']
                    except:
                        produce_size = "None"
                    # 颜色
                    try:
                        produce_color = comment['productColor']
                    except:
                        produce_color = "None"
                    # 用户级别
                    user_level = comment['userLevelName']
                    try:
                        append_comment = comment['afterUserComment']['hAfterUserComment']['content']
                        append_comment_time = comment['afterUserComment']['created']
                    except:
                        append_comment = "无追加"
                        append_comment_time = "None"
                    # 用户京享值
                    user_exp = comment['userExpValue']
                    # 评价点赞数
                    comment_thumpup = comment['usefulVoteCount']
                    # 店铺回复
                    try:
                        comment_reply = comment['replies']
                    except:
                        comment_reply = []
                    if len(comment_reply) == 0:
                        comment_reply_content = "Null"
                        comment_reply_time = "Null"
                    else:
                        comment_reply_content = comment_reply[0]["content"]
                        comment_reply_time = comment_reply[0]["creationTime"]
                    JDItem["shop_id"] = shop_id
                    JDItem["url"] = url
                    JDItem["title"] = title
                    JDItem["brand"] = brand
                    JDItem["brand_url"] = brand_url
                    JDItem["price"] = price
                    JDItem["comment_num"] = comment_num
                    JDItem["good_comment_rate"] = good_comment_rate
                    JDItem["good_comment"] = good_comment
                    JDItem["general_count"] = general_count
                    JDItem["poor_count"] = poor_count
                    JDItem["hot_comment_dict"] = hot_comment_dict
                    JDItem["default_comment_num"] = default_comment_num
                    JDItem["comment_id"] = comment_id
                    JDItem["comment_context"] = comment_context
                    JDItem["comnent_time"] = comnent_time
                    JDItem["comment_score"] = comment_score
                    JDItem["comment_source"] = comment_source
                    JDItem["produce_size"] = produce_size
                    JDItem["produce_color"] = produce_color
                    JDItem["user_level"] = user_level
                    JDItem["user_exp"] = user_exp
                    JDItem["comment_thumpup"] = comment_thumpup
                    JDItem["comment_reply_content"] = comment_reply_content
                    JDItem["comment_reply_time"] = comment_reply_time
                    JDItem["append_comment"] = append_comment
                    JDItem["append_comment_time"] = append_comment_time
                    print("yield评价")
                    yield  JDItem
    主代码

      Item 

    # Item定义
    class JDAllItem(scrapy.Item):
        # 商品信息
        shop_id = scrapy.Field()
        url = scrapy.Field()
        title = scrapy.Field()
        brand = scrapy.Field()
        brand_url = scrapy.Field()
        price = scrapy.Field()
        comment_num = scrapy.Field()
        good_comment_rate = scrapy.Field()
        good_comment = scrapy.Field()
        general_count = scrapy.Field()
        poor_count = scrapy.Field()
        hot_comment_dict = scrapy.Field()
        default_comment_num = scrapy.Field()
        # 主键 评论ID
        comment_id = scrapy.Field()
        comment_context = scrapy.Field()
        comnent_time = scrapy.Field()
        # 用户评分
        comment_score = scrapy.Field()
        # 来源
        comment_source = scrapy.Field()
        # 型号
        produce_size = scrapy.Field()
        # 颜色
        produce_color = scrapy.Field()
        # 用户级别
        user_level = scrapy.Field()
        # 用户京享值
        user_exp = scrapy.Field()
        # 评价点赞数
        comment_thumpup = scrapy.Field()
        # 商家回复
        comment_reply_content = scrapy.Field()
        comment_reply_time = scrapy.Field()
        append_comment = scrapy.Field()
        append_comment_time = scrapy.Field()
    
        def get_insert_sql(self):
            shop_id = self["shop_id"]
            url = self["url"]
            title = self["title"]
            brand = self["brand"]
            brand_url = self["brand_url"]
            price = self["price"]
            comment_num = self["comment_num"]
            good_comment_rate = self["good_comment_rate"]
            good_comment = self["good_comment"]
            general_count = self["general_count"]
            poor_count = self["poor_count"]
            hot_comment_dict = self["hot_comment_dict"]
            default_comment_num = self["default_comment_num"]
            comment_id = self["comment_id"]
            comment_context = self["comment_context"]
            comnent_time = self["comnent_time"]
            comment_score = self["comment_score"]
            comment_source = self["comment_source"]
            produce_size = self["produce_size"]
            produce_color = self["produce_color"]
            user_level = self["user_level"]
            user_exp = self["user_exp"]
            comment_thumpup = self["comment_thumpup"]
            comment_reply_content = self["comment_reply_content"]
            comment_reply_time = self["comment_reply_time"]
            append_comment = self["append_comment"]
            append_comment_time = self["append_comment_time"]
    
            insert_sql = """
                           insert into JDAll(shop_id,url,title,brand,brand_url,price,comment_num,good_comment_rate,good_comment,general_count,poor_count,hot_comment_dict,default_comment_num,comment_id,comment_context,comnent_time,comment_score,comment_source,produce_size,produce_color,user_level,user_exp,comment_thumpup,comment_reply_content,comment_reply_time,append_comment,append_comment_time)  VALUES (%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s)
                       """
            params = (
            shop_id, url, title, brand, brand_url, price, comment_num, good_comment_rate, good_comment, general_count,
            poor_count, hot_comment_dict, default_comment_num, comment_id, comment_context, comnent_time, comment_score,
            comment_source, produce_size, produce_color, user_level, user_exp, comment_thumpup, comment_reply_content,
            comment_reply_time, append_comment, append_comment_time)
            print("return SQL 语句")
            return insert_sql, params
    item.py

      自定义pipelines异步存储数据到MySQL

    class MysqlTwistedPipline(object):
        def __init__(self,dbpool):
            self.dbpool = dbpool
        @classmethod
        def from_settings(cls,settings):
            dbparms = dict(
                host=settings["MYSQL_HOST"],
                db=settings["MYSQL_DBNAME"],
                user=settings["MYSQL_USER"],
                passwd=settings["MYSQL_PASSWORD"],
                charset='utf8',
                cursorclass=MySQLdb.cursors.DictCursor,
                use_unicode=True,
            )
            dbpool = adbapi.ConnectionPool("MySQLdb",**dbparms)
            return cls(dbpool)
    
        def process_item(self,item,spider):
            query = self.dbpool.runInteraction(self.do_insert,item)
            query.addErrback(self.handle_error,item,spider)
    
        def handle_error(self,failure,item,spider):
            print (failure)
    
        def do_insert(self,cursor,item):
            print("写入数据库")
            insert_sql,params = item.get_insert_sql()
            cursor.execute(insert_sql,params)
    pipelines.py

      配置settings启用相关功能

    SPIDER_MIDDLEWARES = {
        # 启用SplashDeduplicateArgsMiddleware中间件
        'scrapy_splash.SplashDeduplicateArgsMiddleware': 100,
    }
    DOWNLOADER_MIDDLEWARES = {
        # splash 所用
        'scrapy_splash.SplashCookiesMiddleware': 723,
        'scrapy_splash.SplashMiddleware': 725,
        'scrapy.downloadermiddlewares.httpcompression.HttpCompressionMiddleware': 810,
    
    }
    ITEM_PIPELINES = {
        #异步保存数据到mysql
        'ArticleSpider.pipelines.MysqlTwistedPipline': 404,
        'scrapy_redis.pipelines.RedisPipeline' : 300,
    }
    # 数据库配置
    MYSQL_HOST = "xxx"
    MYSQL_DBNAME = "xxx"
    MYSQL_USER = "xxx"
    MYSQL_PASSWORD = "xxx"
    # redis配置
    SCHEDULER = "scrapy_redis.scheduler.Scheduler"
    REDIS_URL = 'redis://192.168.1.241:6379'
    DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
    REDIS_HOST = "192.168.1.241"
    REDIS_PORT = 6379
    SCHEDULER_PERSIST = True
    REDIS_DB_INDEX = 1
    # splash配置,此处使用的nginx反代多台splash
    SPLASH_URL = 'http://192.168.1.234'
    settings.py

      main.py配置,用于启动函数

    execute(["scrapy","crawl","jd_all","-s", "LOG_LEVEL=DEBUG", "-s", "JOBDIR=job_info/jd_all"])
    main.py

      数据库建表 

    # 本次存储采用已评价为基础存储商品信息
    CREATE TABLE `JDAll` (
        `shop_id` VARCHAR (16) NOT NULL,  //商品ID
        `url` VARCHAR (255) DEFAULT NULL, //商品url
        `title` VARCHAR (1024) DEFAULT NULL, //商品标题
        `brand` VARCHAR (255) DEFAULT NULL,//品牌
        `brand_url` VARCHAR (1024) DEFAULT NULL,//店铺地址
        `price` VARCHAR (16) DEFAULT NULL,//价格
        `comment_num` INT (16) DEFAULT NULL,//评价总数
        `good_comment_rate` VARCHAR (16) DEFAULT NULL,//好评率
        `good_comment` VARCHAR (16) DEFAULT NULL,//好评数
        `general_count` VARCHAR (16) DEFAULT NULL,//中评数
        `poor_count` VARCHAR (16) DEFAULT NULL,//差评数
        `hot_comment_dict` LONGTEXT,//热评信息
        `default_comment_num` VARCHAR (16) DEFAULT NULL,//默认好评数
        `comment_id` VARCHAR (32) NOT NULL,//评价ID,主键
        `comment_context` LONGTEXT,//评价内容
        `comnent_time` VARCHAR (255) DEFAULT NULL,//评价时间
        `comment_score` VARCHAR (8) DEFAULT NULL,//评价星级
        `comment_source` VARCHAR (255) DEFAULT NULL,//评价来源
        `produce_size` VARCHAR (255) DEFAULT NULL,//商品大小
        `produce_color` VARCHAR (255) DEFAULT NULL,//商品颜色
        `user_level` VARCHAR (32) DEFAULT NULL,//用户会员级别
        `user_exp` VARCHAR (32) DEFAULT NULL,//用户京享值
        `comment_thumpup` VARCHAR (8) DEFAULT NULL,//评价点赞数
        `comment_reply_content` LONGTEXT,//店家回复
        `comment_reply_time` VARCHAR (255) DEFAULT NULL,//店铺回复时间
        `append_comment` LONGTEXT,//买家追评
        `append_comment_time` VARCHAR (255) DEFAULT NULL,//追评时间
        PRIMARY KEY (`comment_id`)
    ) ENGINE = INNODB DEFAULT CHARSET = utf8
    建表SQL

      启动splash,需要自建splash

    # 需要注意的是splash运行时间长会占用很高内存,可能会导致502 504错误,所以我本次爬取将splash分在了两台服务器(一台三个,一台两个),并且前面使用nginx进行反代,并定时重启docker容器
    docker run -tid -p 8050:8050 scrapinghub/splash
    docker run -tid -p 8051:8050 scrapinghub/splash
    docker run -tid -p 8052:8050 scrapinghub/splash
    docker run -tid -p 8053:8050 scrapinghub/splash
    docker run -tid -p 8054:8050 scrapinghub/splash
    启动splash

      启动爬虫:python main.py,启动后会定格此处,需要在redis上push对应的key

       

       Redis上push 启动页的key

       

       爬虫开始正常爬取

       

       Redis去重队列、请求队列、item队列如下

       

    3、数据存储情况

      我一共起了五个进程,爬了一个晚上。

      

      

      

    4、亚马逊爬取结果展示

      商品信息

      

      评价信息

      

          

     ps:京东项目地址:https://github.com/dotbalo/ScrapySplash/tree/jd_all_next_rule

       亚马逊项目地址:https://github.com/dotbalo/ScrapySplash/tree/amazon

       阿里全球速卖通地址:https://github.com/dotbalo/ScrapySplash/tree/aliexpress

       知乎、智联、伯乐在线、拉钩:https://github.com/dotbalo/ScrapySplash

          

      

        

     

  • 相关阅读:
    javaScript面向对象继承方法经典实现
    javascript面向对象之Javascript 继承
    js面向对象 多种创建对象方法小结
    JavaScript 三种创建对象的方法
    正常上线的流程
    java.lang.NoClassDefFoundError: javax/servlet/ServletInputStream
    org/eclipse/jetty/util/component/Container$Listener
    java.io.IOException: Cannot find any registered HttpDestinationFactory from the Bus.
    java.lang.NoClassDefFoundError: javax/wsdl/extensions/ElementExtensible
    java.lang.ClassNotFoundException: org.objectweb.asm.ClassWriter
  • 原文地址:https://www.cnblogs.com/dukuan/p/8336670.html
Copyright © 2011-2022 走看看