zoukankan      html  css  js  c++  java
  • Hall定理 二分图完美匹配

    充分性证明就先咕了,因为楼主太弱了,有一部分没看懂

    霍尔定理内容

    二分图G中的两部分顶点组成的集合分别为X, Y(假设有(lvert X vert leq lvert Y vert))。G中有一组无公共点的边,一端恰好为组成X的点(也就是存在完美匹配)的充分必要条件是:X中的任意k个点至少与Y中的k个点相邻,即对于X中的一个点集W ,令N(W)为W的所有邻居, 霍尔定理即对于任意W,(lvert W vert leq lvert N(W) vert)

    证明

    1.必要性显然
    2.充分性咕咕咕


    但是仅仅是这样Hall定理是没什么用的,有一个NB的推论:

    推论

    假设两边的点集分别为X,Y,则二分图的最大匹配数为(lvert X vert - max{lvert W vert -lvert N(W) vert }),其中W是X的子集
    这个推论就很厉害啦,对于一些特殊的题目,它可以免去建图而直接求最大匹配

  • 相关阅读:
    Python3连接MySQL
    jQuery
    Python之路--协程
    java面向对象练习题
    java基础语法4--封装,继承,多态
    java基础编程题
    java基础语法——方法,static关键字
    java基础语法3
    java基础语法2
    java基础语法1
  • 原文地址:https://www.cnblogs.com/dummyummy/p/10311769.html
Copyright © 2011-2022 走看看