zoukankan      html  css  js  c++  java
  • 「ACM Qingdao Onsite 2016」B.Pocket Cube(暴力 暴力 再暴力)

    描述

    传送门:我是传送门

    The Pocket Cube, also known as the Mini Cube or the Ice Cube, is the 2 × 2 × 2 equivalence of a Rubik’s Cube.
    The cube consists of 8 pieces, all corners.
    Each piece is labeled by a three dimensional coordinate (h, k, l) where h, k, l ∈ {0, 1}. Each of the six faces owns four small faces filled with a positive integer.
    For each step, you can choose a certain face and turn the face ninety degrees clockwise or counterclockwise.
    You should judge that if one can restore the pocket cube in one step. We say a pocket cube has been restored if each face owns four same integers.

    输入

    The first line of input contains one integer N(N ≤ 30) which is the number of test cases.

    For each test case, the first line describes the top face of the pocket cube, which is the common 2 × 2 face of pieces

    labelled by (0, 0, 1),(0, 1, 1),(1, 0, 1),(1, 1, 1). Four integers are given corresponding to the above pieces.

    The second line describes the front face, the common face of (1, 0, 1),(1, 1, 1),(1, 0, 0),(1, 1, 0). Four integers are

    given corresponding to the above pieces.

    The third line describes the bottom face, the common face of (1, 0, 0),(1, 1, 0),(0, 0, 0),(0, 1, 0). Four integers are

    given corresponding to the above pieces.

    The fourth line describes the back face, the common face of (0, 0, 0),(0, 1, 0),(0, 0, 1),(0, 1, 1). Four integers are

    given corresponding to the above pieces.

    The fifth line describes the left face, the common face of (0, 0, 0),(0, 0, 1),(1, 0, 0),(1, 0, 1). Four integers are given

    corresponding to the above pieces.

    The six line describes the right face, the common face of (0, 1, 1),(0, 1, 0),(1, 1, 1),(1, 1, 0). Four integers are given

    corresponding to the above pieces.

    In other words, each test case contains 24 integers a, b, c to x. You can flat the surface to get the surface development

    as follows.

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    + - + - + - + - + - + - +
    | q | r | a | b | u | v |
    + - + - + - + - + - + - +
    | s | t | c | d | w | x |
    + - + - + - + - + - + - +
    | e | f |
    + - + - +
    | g | h |
    + - + - +
    | i | j |
    + - + - +
    | k | l |
    + - + - +
    | m | n |
    + - + - +
    | o | p |
    + - + - +

    输出

    For each test case, output YES if can be restored in one step, otherwise output NO.

    样例

    输入

    4
    1 1 1 1
    2 2 2 2
    3 3 3 3
    4 4 4 4
    5 5 5 5
    6 6 6 6
    6 6 6 6
    1 1 1 1
    2 2 2 2
    3 3 3 3
    5 5 5 5
    4 4 4 4
    1 4 1 4
    2 1 2 1
    3 2 3 2
    4 3 4 3
    5 5 5 5
    6 6 6 6
    1 3 1 3
    2 4 2 4
    3 1 3 1
    4 2 4 2
    5 5 5 5
    6 6 6 6

    输出

    YES
    YES
    YES
    NO

    思路

    直接暴力模拟,只有几种情况,分析一下就清楚了

    但是有一个坑点:

    必须判定是否有6种颜色出现

    坑了我两个小时来debug

    代码

      1 #include<bits/stdc++.h>
      2 using namespace std;
      3 int a[10][10];
      4 bool f[10],f2[10];
      5 
      6 bool check(int a,int b,int c,int d)
      7 {
      8     if(a == b && c == d && a == c)
      9         return true;
     10     return false;
     11 }
     12 
     13 set<int> se;
     14 int main() 
     15 {
     16     int t;
     17     scanf("%d",&t);
     18     while(t--)
     19     {
     20         se.clear();
     21         memset(a,0,sizeof a);
     22         memset(f,0,sizeof f);
     23         memset(f2,0,sizeof f2);
     24         for(int i = 1;i <= 6;i++)
     25         {
     26             for(int j = 1;j <= 4;j++)
     27             {
     28                 scanf("%d",&a[i][j]);
     29             }
     30             int tmp = 1;
     31             for(int k = 2;k <= 4;k++)
     32             {
     33                 if(a[i][1] != a[i][k])
     34                     tmp = 0;
     35             }
     36             if(tmp == 1)
     37                 f[i] = 1;
     38         }
     39         int cou = 0;
     40         if(f[1] == 1 && f[3] == 1)
     41         {
     42             f2[1] = 1;
     43             cou++;
     44         }
     45         if(f[2] == 1 && f[4] == 1)
     46         {
     47             f2[2] = 1;
     48             cou++;
     49         }
     50         if(f[5] == 1 && f[6] == 1)
     51         {
     52             f2[3] = 1;
     53             cou++;
     54         }
     55         for(int i = 1;i <= 6;i++)
     56             for(int j = 1;j <= 4;j++)
     57                 se.insert(a[i][j]);
     58         int cas = se.size();
     59         if(cas != 6)
     60             cou = 0;
     61         if(cou == 2 || cou == 0)
     62         {
     63             printf("NO
    ");
     64         }
     65         else 
     66         {
     67             if(cou == 3)
     68             {
     69                 printf("YES
    ");
     70             }
     71             else 
     72             {
     73                 if(f2[1] == 1)
     74                 {
     75                     if((check(a[5][2],a[5][4],a[2][3],a[2][4]) && check(a[2][1],a[2][2],a[6][4],a[6][2]) && check(a[6][3],a[6][1],a[4][2],a[4][1]) && check(a[4][4],a[4][3],a[5][1],a[5][3])) || (check(a[5][2],a[5][4],a[4][2],a[4][1]) && check(a[2][1],a[2][2],a[5][1],a[5][3]) && check(a[6][3],a[6][1],a[2][3],a[2][4]) && check(a[4][4],a[4][3],a[6][4],a[6][2])))
     76                         printf("YES
    ");
     77                     else 
     78                         printf("NO
    ");
     79                 }
     80                 else 
     81                 {
     82                     if(f2[2] == 1)
     83                     {
     84                         if((check(a[5][1],a[5][2],a[1][3],a[1][4]) && check(a[1][1],a[1][2],a[6][3],a[6][4]) && check(a[6][1],a[6][2],a[3][2],a[3][1]) && check(a[3][4],a[3][3],a[5][3],a[5][4])) || (check(a[5][1],a[5][2],a[3][2],a[3][1]) && check(a[1][1],a[1][2],a[5][3],a[5][4]) && check(a[6][1],a[6][2],a[1][3],a[1][4]) && check(a[3][4],a[3][3],a[6][3],a[6][4])))
     85                            printf("YES
    ");
     86                         else 
     87                             printf("NO
    ");
     88                     }
     89                     else   // f2[3] == 1
     90                     {
     91                         if((check(a[1][1],a[1][3],a[2][2],a[2][4]) && check(a[2][1],a[2][3],a[3][2],a[3][4]) && check(a[3][1],a[3][3],a[4][2],a[4][4]) && check(a[4][1],a[4][3],a[1][2],a[1][4])) || (check(a[1][1],a[1][3],a[4][2],a[4][4]) && check(a[2][1],a[2][3],a[1][2],a[1][4]) && check(a[3][1],a[3][3],a[2][2],a[2][4]) && check(a[4][1],a[4][3],a[3][2],a[3][4])))
     92                             printf("YES
    ");
     93                         else 
     94                             printf("NO
    ");
     95                     }
     96                        
     97                 }
     98             }
     99         }
    100         
    101     }
    102     return 0;
    103 }
  • 相关阅读:
    【洛谷6620】[省选联考 2020 A 卷] 组合数问题(下降幂)
    【AtCoder】AtCoder Grand Contest 033 解题报告
    【AtCoder】AtCoder Grand Contest 034 解题报告
    【洛谷5445】[APIO2019] 路灯(树套树)
    【LOJ6059】「2017 山东一轮集训 Day1」Sum(倍增优化数位DP+NTT)
    【LOJ6159】「美团 CodeM 初赛 Round A」最长树链(树的直径)
    重新入门的Polya定理
    【洛谷6105】[Ynoi2010] y-fast trie(set)
    【BZOJ4480】 [JSOI2013] 快乐的jyy(回文自动机裸题)
    【LOJ6172】Samjia 和大树(树形DP+猜结论)
  • 原文地址:https://www.cnblogs.com/duny31030/p/14305115.html
Copyright © 2011-2022 走看看