zoukankan      html  css  js  c++  java
  • IC封装的热特性

    ΘJA是结到周围环境的热阻,单位是°C/W。周围环境通常被看作热“地”点。ΘJA取决于IC封装、电路板、空气流通、辐射和系统特性,通常辐射的影响可以忽略。ΘJA专指自然条件下(没有加通风措施)的数值。

    ΘJC是结到管壳的热阻,管壳可以看作是封装外表面的一个特定点。ΘJC取决于封装材料(引线框架、模塑材料、管芯粘接材料)和特定的封装设计(管芯厚度、裸焊盘、内部散热过孔、所用金属材料的热传导率)。

    对带有引脚的封装来说,ΘJC在管壳上的参考点位于塑料外壳延伸出来的1管脚,在标准的塑料封装中,ΘJC的测量位置在1管脚处。对于带有裸焊盘的封装,ΘJC的测量位置在裸焊盘表面的中心点。ΘJC的测量是通过将封装直接放置于一个“无限吸热”的装置上进行的,该装置通常是一个液冷却的铜片,能够在无热阻的情况下吸收任意多少的热量。这种测量方法设定从管芯到封装表面的热传递全部由传导的方式进行。

    注意ΘJC表示的仅仅是散热通路到封装表面的电阻,因此ΘJC总是小于ΘJA。ΘJC表示是特定的、通过传导方式进行热传递的散热通路的热阻,而ΘJA则表示的是通过传导、对流、辐射等方式进行热传递的散热通路的热阻。

    ΘCA是指从管壳到周围环境的热阻。ΘCA包括从封装外表面到周围环境的所有散热通路的热阻。

    根据上面给出的定义,我们可以知道:

    ΘJA = ΘJC + ΘCA

    ΘJB是指从结到电路板的热阻,它对结到电路板的热通路进行了量化。通常ΘJB的测量位置在电路板上靠近封装的1管脚处(与封装边沿的距离小于1mm)。ΘJB包括来自两个方面的热阻:从IC的结到封装底部参考点的热阻,以及贯穿封装底部的电路板的热阻。

    测量ΘJB时,首先阻断封装表面的热对流,并且在电路板距封装位置较远的一侧安装一个散热片。如下图1所示:

    图1. ΘJB的测量过程示意图
    图1. ΘJB的测量过程示意图

    电路中芯片的耗散功率设计经验总结

     

    从事电子电力设计工作的人都知道,芯片是电路中的心脏,而涉及芯片问题,首先要考虑的就肯定是散热。芯片散热的好坏将直接关系到此电路系统能否正常工作,通常来说耗散功率指的就是芯片散热,本篇文章给出了一些关于耗散功率的经验总结,希望大家在阅读之后能够有所收获。

    芯片的spec上一般都有耗散功率这个参数。比如芯片ZXT10P20DE6,它的datasheet中有以下参数:

    1-1

    任何TTL或者CMOS器件都是要在一定的结温下,而芯片随着功耗的升高,温度逐渐上升,当到达最大结温的时候,此时芯片的功耗就是耗散功率。芯片的功耗一般用P=I2R或者P=UI(线性条件下)来计算。

    从ZXT10P20DE6 datasheet,我们可以了解到耗散功率都是在一定条件下测试出来的器件能够承受的最大功率,超过这个最大功率,器件就可能会遭受不可恢复的损坏。一般测试条件是环境温度和散热措施。ZXT10P20DE6它的耗散功率是在摄氏25度下,在两个散热措施:25mm*25mm 1oz(34um)的铜箔,器件直接焊接在一个FR4 PCB板下测试出的功率。

    测试环境直接关系到了耗散功率的大小。比如ZXT10P20DE6,它是一个三极管,他的最大结温是150度(但实际可能到不了, 130度才能正常工作)。在25度环境下它能测出1.1W耗散功率,但在75度环境下可能它的耗散功率就只有零点几瓦了。不同的散热措施下,耗散功率也不同,一个是 1.1W,一个是1.7W。

    表征散热措施一个参数是热阻。所谓“热阻”(thermal resistance),是指反映阻止热量传递的能力的综合参量。热阻的概念与电阻非常类似,单位也与之相仿——℃/W,即物体持续传热功率为1W时,导热路径两端的温差。对散热器而言,导热路径的两端分别是发热物体(CPU)与环境空气。对于IC而言导热两端路劲是IC最中心与环境空气。

    上表中三极管的热阻是73度/W。如果该三极管功耗是1W,则其温度将达到25+73=98度。如果功耗增加到 1.7W, 则三极管的结温就将达到25+1.7*73=25+124=145度。此时芯片已经达到最大结温,芯片功耗再上升的话,就会损坏芯片。使用散热措施能够降低器件的热阻,比如 AMD一款双核CPU,它做了散热措施之后,热阻只有0.414度/瓦。

    对于一个芯片,我们要怎么关注它的散热问题?首先,查手册了解芯片的耗散功率。然后,计算芯片在极端工作条件下的最大功耗。最后,对比耗散功率和芯片最大功耗,如果耗散功率小于芯片最大功耗,则必须考虑增加。

    散热措施

    以手机充电电路为例子,手机通过AON4703给手机电池充电。一般情况下,手机USB 5V电压充电,如果恒流充电电流为500mA。则AON4703的mos功耗为5V-3.3V-0.5V=1.2V,则P=1.2V*500mA=600mW。AON4703的耗散功率为1.7W,则在一般情况下,该芯片能够正常工作,不需要增加再增加额外散热措施。

    但是如果手机用DC JACK,或者直流电源充电,当充电电压为8V的时候,芯片的功耗为(8-3.3-0.5)*500mA=2.1W,此时手机功耗超过PCM(最大耗散功率),则必须考虑增加额外的散热措施。如果不增加,则大概可以算出来手机最高截止充电电压为7V。当然为了在8V的电压下也能充电,也可以降低充电电流从而降低功耗。

    本篇文章从主要讲解了电路中芯片的散热措施和应用,在讲解应用时,给出了较为详细的实例分析来促进理解,希望大家在阅读过本篇文章之后,能够利用文章当中的经验来自行应对芯片的散热问题。

  • 相关阅读:
    libnids-1.24 使用源码问题
    Linux学习man page
    shell 脚本,提取文件中的内容
    shell中的语法(1)
    python 爬取百度翻译进行中英互译
    matlab等高线绘制
    matlab 对tif数据高程图的处理分析
    python网络爬虫与信息提取 学习笔记day3
    python网络爬虫与信息提取 学习笔记day2
    python网络爬虫与信息提取 学习笔记day1
  • 原文地址:https://www.cnblogs.com/duwenqidu/p/13927637.html
Copyright © 2011-2022 走看看