zoukankan      html  css  js  c++  java
  • 02(b)多元无约束优化问题-最速下降法

    此部分内容接02(a)多元无约束优化问题的内容!

    第一类:最速下降法(Steepest descent method)

    [f({{mathbf{x}}_{k}}+mathbf{delta })approx f({{mathbf{x}}_{k}})+{{ abla }^{T}}f({{mathbf{x}}_{k}})cdot mathbf{delta }]

    要使新找到的一点${{mathbf{x}}_{k}}+mathbf{delta }$的函数值小于原来点${{mathbf{x}}_{k}}$的函数值,即:

    [f({{mathbf{x}}_{k}}+mathbf{delta })-f({{mathbf{x}}_{k}})={{ abla }^{T}}f({{mathbf{x}}_{k}})cdot mathbf{delta }=left| abla f({{mathbf{x}}_{k}}) ight|cdot left| mathbf{delta } ight|cos heta <0]

    其中$ heta $为梯度向量$ abla f({{mathbf{x}}_{k}})$和方向向量$mathbf{delta }$的夹角,由上式可见当$ heta =pi $时$f({{mathbf{x}}_{k}}+mathbf{delta })$

    与$f({{mathbf{x}}_{k}})$的差值在满足(8)式的情况下达到最大,即$mathbf{delta }$应取与梯度向量相反的方向$- abla f({{mathbf{x}}_{k}})$。故此时使函数$f(mathbf{x})$在点${{mathbf{x}}_{k}}$下降速度最快的方向为:

    ${{d}_{k}}=- abla f({{mathbf{x}}_{k}})$。

    Step3:通过Step2确定下降方向${{mathbf{d}}_{k}}$之后,$f({{mathbf{x}}_{k}}+{{alpha }_{k}}{{mathbf{d}}_{k}})$可以看成${{alpha }_{k}}$的一维函数,这一步的主要方法有(Dichotomous search, Fibonacci search, Goldensection search, quadratic interpolation method, and cubic interpolation method);所确定一个步长${{alpha }_{k}}>0$,${{mathbf{x}}_{k+1}}={{mathbf{x}}_{k}}+{{alpha }_{k}}{{mathbf{d}}_{k}}$;

    Step4: if走一步的距离$left| {{alpha }_{k}}{{mathbf{d}}_{k}} ight|<varepsilon $,则停止并且输出解${{mathbf{x}}_{k+1}}$;else $k:=k+1$并返回Step2,继续迭代。

  • 相关阅读:
    Linux Shell中的延时函数
    调试core文件(转)
    C++类构造函数初始化列表(转)
    seq简介(转)
    查看内存使用情况(转)
    awk 数组实例(转)
    伪终端(转)
    C++类成员变量的初始化方法(转)
    几个shell命令(转)
    子进程自父进程继承什么或未继承什么(转)
  • 原文地址:https://www.cnblogs.com/duyiExplorer/p/11176886.html
Copyright © 2011-2022 走看看