题意:给定一个序列,有 n 个数,只有01,然后你进行k次操作,把所有的1变成0,求有多种方法。
析:DP是很明显的,dp[i][j] 表示进行第 i 次操作,剩下 j 个1,然后操作就两种,把1变成0,把0变成1。也可以用记忆化来做。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define frer freopen("in.txt", "r", stdin) #define frew freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const char *mark = "+-*"; const int dr[] = {1, 0, -1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[maxn][maxn]; int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); memset(dp, 0, sizeof dp); int x, cnt = 0; for(int i = 0; i < n; ++i){ scanf("%d", &x); cnt += x; } dp[0][cnt] = 1; for(int i = 1; i <= m; ++i){ for(int j = 0; j <= n; ++j){ if(j > 0) dp[i][j] = (dp[i][j] + dp[i-1][j-1] * (n-j+1)) % mod; if(j < n) dp[i][j] = (dp[i][j] + dp[i-1][j+1] * (j+1)) % mod; } } printf("Case #%d: %lld ", kase, dp[m][0]); } return 0; }
记忆化搜索:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #include <sstream> #define frer freopen("in.txt", "r", stdin) #define frew freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e3 + 5; const int mod = 1e9 + 7; const char *mark = "+-*"; const int dr[] = {1, 0, -1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[maxn][maxn]; LL dfs(int k, int cnt){ if(k == 0) return cnt == 0; LL &ans = dp[k][cnt]; if(ans >= 0) return ans; int cnt0 = n - cnt; ans = 0; if(cnt > 0) ans = (ans + dfs(k-1, cnt-1) * cnt) % mod; if(cnt0 > 0) ans = (ans + dfs(k-1, cnt+1) * cnt0) % mod; return ans; } int main(){ int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%d %d", &n, &m); memset(dp, -1, sizeof dp); int x, cnt = 0; for(int i = 0; i < n; ++i){ scanf("%d", &x); cnt += x; } printf("Case #%d: %lld ", kase, dfs(m, cnt)); } return 0; }