题意:统计在给定区间内0的数量。
析:数位DP,dp[i][j] 表示前 i 位 有 j 个0,注意前导0.
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 1e5 + 5; const int mod = 1e9 + 7; const int dr[] = {-1, 0, 1, 0}; const int dc[] = {0, 1, 0, -1}; const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } LL dp[15][15]; int a[15]; LL dfs(int pos, int num, bool is, bool ok){ if(!pos) return is ? 1 : num; LL &ans = dp[pos][num]; if(!ok && ans >= 0 && !is) return ans; LL res = 0; int n = ok ? a[pos] : 9; for(int i = 0; i <= n; ++i){ if(is) res += dfs(pos-1, num, !i, ok && i == n); else if(!i) res += dfs(pos-1, num+1, false, ok && i == n); else res += dfs(pos-1, num, false, ok && i == n); } if(!ok && !is) ans = res; return res; } LL solve(LL n){ if(n == -1) return 0; int len = 0; while(n > 0){ a[++len] = n % 10; n /= 10; } return dfs(len, 0, true, true); } int main(){ memset(dp, -1, sizeof dp); LL x, y; int T; cin >> T; for(int kase = 1; kase <= T; ++kase){ scanf("%lld %lld", &x, &y); printf("Case %d: %lld ", kase, solve(y)-solve(x-1)); } return 0; }