zoukankan      html  css  js  c++  java
  • UVa 1642 Magical GCD (暴力+数论)

    题意:给出一个长度在 100 000 以内的正整数序列,大小不超过 10^ 12。求一个连续子序列,使得在所有的连续子序列中,

    它们的GCD值乘以它们的长度最大。

    析:暴力枚举右端点,然后在枚举左端点时,我们对gcd相同的只保留一个,那就是左端点最小的那个,只有这样才能保证是最大,然后删掉没用的。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <tr1/unordered_map>
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    using namespace std :: tr1;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const LL LNF = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 5;
    const int mod = 1e9 + 7;
    const int N = 1e6 + 5;
    const int dr[] = {-1, 0, 1, 0};
    const int dc[] = {0, 1, 0, -1};
    const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline int Min(int a, int b){ return a < b ? a : b; }
    inline int Max(int a, int b){ return a > b ? a : b; }
    inline LL Min(LL a, LL b){ return a < b ? a : b; }
    inline LL Max(LL a, LL b){ return a > b ? a : b; }
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    LL a[maxn];
    struct node{
        int posi, posj;
        LL val;
        bool operator < (const node &p) const{
            return val < p.val || (val == p.val && posi < p.posi);
        }
        node(int p, int q, LL x) : posi(p), val(x), posj(q) { }
    };
    
    vector<node> v;
    vector<node> :: iterator it, it1;
    
    int main(){
        int T;  cin >> T;
        while(T--){
            scanf("%d", &n);
            for(int i = 0; i < n; ++i)  scanf("%lld", a+i);
            v.clear();
            LL ans = 0;
            for(int i = 0; i < n; ++i){
                ans = Max(ans, a[i]);
                for(int j = 0; j < v.size(); ++j){
                    ans = Max(ans, v[j].val * (v[j].posj-v[j].posi+1));
                    v[j].val = gcd(v[j].val, a[i]);
                    v[j].posj = i;
                }
                v.push_back(node(i, i, a[i]));
                sort(v.begin(), v.end());
                it = v.begin();
                ++it;
                while(it != v.end()){
                    it1 = it;  --it1;
                    if(it1->val == it->val)  it = v.erase(it);
                    else ++it;
                }
            }
            
            for(int i = 0; i < v.size(); ++i)
                ans = Max(ans, v[i].val * (v[i].posj-v[i].posi+1));
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
     
  • 相关阅读:
    可视化工具 kibana 的安装和使用
    常见的数据类型
    Elastic Search 分词器的介绍和使用
    基于 TCP 协议的网络编程
    Java7 的 NIO.2
    NIO(New IO)
    Java9 改进的对象序列化
    反射和泛型
    使用反射生成 JDK 动态代理
    使用反射生成并操作对象
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/5898304.html
Copyright © 2011-2022 走看看