题意:给定一个被高亮的数,问你是不是有个时间恰好高亮是这个数。
析:直接暴力,直接暴力,枚举每一位时间,当然也可以枚举时间,能找到就是有,找不到就算了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <cstdio> #include <string> #include <cstdlib> #include <cmath> #include <iostream> #include <cstring> #include <set> #include <queue> #include <algorithm> #include <vector> #include <map> #include <cctype> #include <cmath> #include <stack> #define debug puts("+++++") //#include <tr1/unordered_map> #define freopenr freopen("in.txt", "r", stdin) #define freopenw freopen("out.txt", "w", stdout) using namespace std; //using namespace std :: tr1; typedef long long LL; typedef pair<int, int> P; const int INF = 0x3f3f3f3f; const double inf = 0x3f3f3f3f3f3f; const LL LNF = 0x3f3f3f3f3f3f; const double PI = acos(-1.0); const double eps = 1e-8; const int maxn = 200 + 5; const LL mod = 1e3 + 7; const int N = 1e6 + 5; const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1}; const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1}; const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"}; inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); } inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); } inline int lcm(int a, int b){ return a * b / gcd(a, b); } int n, m; const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; inline int Min(int a, int b){ return a < b ? a : b; } inline int Max(int a, int b){ return a > b ? a : b; } inline LL Min(LL a, LL b){ return a < b ? a : b; } inline LL Max(LL a, LL b){ return a > b ? a : b; } inline bool is_in(int r, int c){ return r >= 0 && r < n && c >= 0 && c < m; } map<int, int> mp; int main(){ freopen("alarm.in", "r", stdin); freopen("alarm.out", "w", stdout); mp[0] = 6, mp[1] = 2, mp[2] = 5, mp[3] = 5, mp[4] = 4; mp[5] = 5, mp[6] = 6, mp[7] = 3, mp[8] = 7, mp[9] = 6; while(scanf("%d", &n) == 1){ bool ok = false; int h, t; for(int i = 0; i < 3 && !ok; ++i) for(int j = 0; j < 10 && !ok; ++j) for(int k = 0; k < 6 && !ok; ++k) for(int l = 0; l < 10 && !ok; ++l) if(i*10 + j < 24 && k*10 + k < 60 && mp[i] + mp[j] + mp[k] + mp[l] == n){ ok = true; h = i * 10 + j; m = k * 10 + l; } if(ok) printf("%02d:%02d ", h, m); else puts("Impossible"); } return 0; }